16 research outputs found
Lamina propria macrophage phenotypes in relation to Escherichia coli in Crohn's disease
Background:
Abnormal handling of E. coli by lamina propria (LP) macrophages may contribute to Crohn’s disease (CD) pathogenesis. We aimed to determine LP macrophage phenotypes in CD, ulcerative colitis (UC) and healthy controls (HC), and in CD, to compare macrophage phenotypes according to E. coli carriage.
Methods:
Mucosal biopsies were taken from 35 patients with CD, 9 with UC and 18 HCs. Laser capture microdissection was used to isolate E. coli-laden and unladen LP macrophages from ileal or colonic biopsies. From these macrophages, mRNA was extracted and cytokine and activation marker expression measured using RT-qPCR.
Results:
E. coli-laden LP macrophages were identified commonly in mucosal biopsies from CD patients (25/35, 71 %), rarely in UC (1/9, 11 %) and not at all in healthy controls (0/18). LP macrophage cytokine mRNA expression was greater in CD and UC than healthy controls. In CD, E. coli-laden macrophages expressed high IL-10 & CD163 and lower TNFα, IL-23 & iNOS irrespective of macroscopic inflammation. In inflamed tissue, E. coli-unladen macrophages expressed high TNFα, IL-23 & iNOS and lower IL-10 & CD163. In uninflamed tissue, unladen macrophages had low cytokine mRNA expression, closer to that of healthy controls.
Conclusion:
In CD, intra-macrophage E. coli are commonly found and LP macrophages express characteristic cytokine mRNA profiles according to E. coli carriage. Persistence of E. coli within LP macrophages may provide a stimulus for chronic inflammation
Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers
https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
Supplemental Data for Paraben Metabolite Characterization 2.22.18
Cell culture methods, proliferation assay data for dose response curves, and 2D interaction diagram
Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2: personal care product ingredients
An intensive study was conducted to provide data on intra- and inter-individual variation in urinary excretion of a series of ingredients in personal care products (parabens, triclosan, benzophenones) and bisphenol A (BPA, not expected to be an ingredient) in 8 volunteers over 6 days. Exposure diaries recorded use of personal care products with identified target analytes as ingredients. Participants' usual products were replaced with products without the target analytes for 2 of the 6 days. Urine void volumes and times were recorded. Methyl, ethyl, and n-propylparabens, triclosan, benzophenone-3, and BPA were frequently detected (>70% of samples). Urinary concentrations of the parabens and triclosan were lower on product replacement days. First morning void concentrations correlated moderately to highly with 24-h composite concentrations for all analytes. Intraclass correlation coefficients (ICCs) for spot samples collected on days with usual product use were low for BPA (0.15), moderate for n-propylparaben and methylparaben (0.39 and 0.56, respectively), and high for ethylparaben, benzophenone-3, and triclosan (0.76, 0.81, and 0.934, respectively); ICCs were consistently higher on the basis of cr-adjusted concentrations. Hydration status adjustment methods were assessed by comparing unadjusted and adjusted concentrations to urinary excretion rates (ER, ng/kg-h) for all analytes and samples. Specific gravity-adjusted concentrations correlated slightly better with ER than creatinine-adjusted concentrations. Within-individual variation in biomarker concentrations was highest for methyl and ethylparabens (2 orders of magnitude variation in spot sample concentrations) and lower for the other analytes (1-1.5 orders of magnitude). This dataset provides insight into the design and interpretation of urinary biomonitoring studies for non-persistent chemicals
Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 1: Metals
The aim of the current HBM-study is to further the understanding of the impact of inter- and intra-individual variability in HBM surveys as it may have implications for the design and interpretation of the study outcomes. As spot samples only provide a snapshot in time of the concentrations of chemicals in an individual, it remains unclear to what extent intra-individual variability plays a role in the overall variability of population-wide HBM surveys. The current paper describes the results of an intensive biomonitoring study, in which all individual urine samples of 8 individuals were collected over a 6-day sampling period (a total of 352 unique samples). By analyzing different metals (As, Cd, Mn, Ni) in each individual sample, inter- and intra-individual variability for these four metals could be determined, and the relationships between exposure, internal dose, and sampling protocol assessed. Although the range of biomarker values for different metals was well within the normal range reported in large-scale population surveys, large intra-individual differences over a 6-day period could also be observed. Typically, measured biomarker values span at least an order of magnitude within an individual, and more if specific exposure episodes could be identified. Fish consumption for example caused a twenty- to thirty-fold increase in urinary As-levels over a period of 2-6. h. Intra-class correlation coefficients (ICC) were typically low for uncorrected biomarker values (between 0.104 and 0.460 for the 4 metals), but improved when corrected for creatinine or specific gravity (SG). The results show that even though urine is a preferred matrix for HBM studies, there are certain methodological issues that need to be taken into account in the interpretation of urinary biomarker data, related to the intrinsic variability of the urination process itself, the relationship between exposure events and biomarker quantification, and the timing of sampling. When setting up HBM-projects, this expected relationship between individual exposure episode and urinary biomarker concentration needs to be taken into account
Data from: Metabolites of n-Butylparaben and iso-Butylparaben exhibit estrogenic properties in MCF-7 and T47D human breast cancer cell lines
Two oxidized metabolites of n-butylparaben (BuP) and iso-butylparaben (IsoBuP) discovered in human urine samples exhibit structural similarity to endogenous estrogens. We hypothesized that these metabolites bind to the human estrogen receptor (ER) and promote estrogen signaling. We tested this using models of ER-mediated cellular proliferation. The estrogenic properties of 3-hydroxy n-butyl 4-hydroxybenzoate (3OH) and 2-hydroxy iso-butyl 4-hydroxybenzoate (2OH) were determined using the ER-positive, estrogen-dependent human breast cancer cell lines MCF-7, and T47D. The 3OH metabolite induced cellular proliferation with EC50 of 8.2 µM in MCF-7 cells. The EC50 for 3OH in T47D cells could not be reached. The 2OH metabolite induced proliferation with EC50 of 2.2 µM and 43.0 µM in MCF-7 and T47D cells, respectively. The EC50 for the parental IsoBuP and BuP was 0.30 and 1.2 µM in MCF-7 cells, respectively. The expression of a pro-proliferative, estrogen-inducible gene (GREB1) was induced by these compounds and blocked by co-administration of an ER antagonist (ICI 182, 780), confirming the ER-dependence of these effects. The metabolites promoted significant ER-dependent transcriptional activity of an ERE-luciferase reporter construct at 10 and 20 µM for 2OH and 10 µM for 3OH. Computational docking studies showed that the paraben compounds exhibited the potential for favorable ligand-binding domain interactions with human ERα in a manner similar to known x-ray crystal structures of 17ß-estradiol in complex with ERα. We conclude that the hydroxylated metabolites of BuP and IsoBuP are weak estrogens and should be considered as additional components of potential endocrine disrupting effects upon paraben exposure