46 research outputs found
Cancer and psychiatric diagnoses in the year preceding suicide
BACKGROUND: Patients with cancer are known to be at increased risk for suicide but little is known about the interaction between cancer and psychiatric diagnoses, another well-documented risk factor.
METHODS: Electronic medical records from nine healthcare systems participating in the Mental Health Research Network were aggregated to form a retrospective case-control study, with ICD-9 codes used to identify diagnoses in the 1 year prior to death by suicide for cases (N = 3330) or matching index date for controls (N = 297,034). Conditional logistic regression was used to assess differences in cancer and psychiatric diagnoses between cases and controls, controlling for sex and age.
RESULTS: Among patients without concurrent psychiatric diagnoses, cancer at disease sites with lower average 5-year survival rates were associated with significantly greater relative risk, while cancer disease sites with survival rates of \u3e70% conferred no increased risk. Patients with most psychiatric diagnoses were at higher risk, however, there was no additional risk conferred to these patients by a concurrent cancer diagnosis.
CONCLUSION: We found no evidence of a synergistic effect between cancer and psychiatric diagnoses. However, cancer patients with a concurrent psychiatric illness remain at the highest relative risk for suicide, regardless of cancer disease site, due to strong independent associations between psychiatric diagnoses and suicide. For patients without a concurrent psychiatric illness, cancer disease sites associated with worse prognoses appeared to confer greater suicide risk
Development of an amplicon-based sequencing approach in response to the global emergence of mpox
The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by
CTSA Grant Number UL1 TR001863 from the
National Center for Advancing Translational
Science (NCATS), a component of the National
Institutes of Health (NIH) awarded to CBFV. INSA
was partially funded by the HERA project (Grant/
2021/PHF/23776) supported by the European
Commission through the European Centre for
Disease Control (to VB).info:eu-repo/semantics/publishedVersio
The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts
Biodiversity continues to decline in the face of increasing anthropogenic pressures
such as habitat destruction, exploitation, pollution and introduction of
alien species. Existing global databases of species’ threat status or population
time series are dominated by charismatic species. The collation of datasets with
broad taxonomic and biogeographic extents, and that support computation of
a range of biodiversity indicators, is necessary to enable better understanding of
historical declines and to project – and avert – future declines. We describe and
assess a new database of more than 1.6 million samples from 78 countries representing
over 28,000 species, collated from existing spatial comparisons of
local-scale biodiversity exposed to different intensities and types of anthropogenic
pressures, from terrestrial sites around the world. The database contains
measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35)
biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains
more than 1% of the total number of all species described, and more than
1% of the described species within many taxonomic groups – including flowering
plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans
and hymenopterans. The dataset, which is still being added to, is
therefore already considerably larger and more representative than those used
by previous quantitative models of biodiversity trends and responses. The database
is being assembled as part of the PREDICTS project (Projecting Responses
of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk).
We make site-level summary data available alongside this article. The full database
will be publicly available in 2015
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
Modelling human choices: MADeM and decision‑making
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
Thigh-length compression stockings and DVT after stroke
Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease