117 research outputs found

    Detachment, Futile Cycling and Nucleotide Pocket Collapse in Myosin-V Stepping

    Full text link
    Myosin-V is a highly processive dimeric protein that walks with 36nm steps along actin tracks, powered by coordinated ATP hydrolysis reactions in the two myosin heads. No previous theoretical models of the myosin-V walk reproduce all the observed trends of velocity and run-length with [ADP], [ATP] and external forcing. In particular, a result that has eluded all theoretical studies based upon rigorous physical chemistry is that run length decreases with both increasing [ADP] and [ATP]. We systematically analyse which mechanisms in existing models reproduce which experimental trends and use this information to guide the development of models that can reproduce them all. We formulate models as reaction networks between distinct mechanochemical states with energetically determined transition rates. For each network architecture, we compare predictions for velocity and run length to a subset of experimentally measured values, and fit unknown parameters using a bespoke MCSA optimization routine. Finally we determine which experimental trends are replicated by the best-fit model for each architecture. Only two models capture them all: one involving [ADP]-dependent mechanical detachment, and another including [ADP]-dependent futile cycling and nucleotide pocket collapse. Comparing model-predicted and experimentally observed kinetic transition rates favors the latter.Comment: 11 pages, 5 figures, 6 table

    A kinetic model describing the processivity of Myosin-V

    Get PDF
    The precise details of how myosin-V coordinates the biochemical reactions and mechanical motions of its two head elements to engineer effective processive molecular motion along actin filaments remain unresolved. We compare a quantitative kinetic model of the myosin-V walk, consisting of five basic states augmented by two further states to allow for futile hydrolysis and detachments, with experimental results for run lengths, velocities, and dwell times and their dependence on bulk nucleotide concentrations and external loads in both directions. The model reveals how myosin-V can use the internal strain in the molecule to synchronize the motion of the head elements. Estimates for the rate constants in the reaction cycle and the internal strain energy are obtained by a computational comparison scheme involving an extensive exploration of the large parameter space. This scheme exploits the fact that we have obtained analytic results for our reaction network, e.g., for the velocity but also the run length, diffusion constant, and fraction of backward steps. The agreement with experiment is often reasonable but some open problems are highlighted, in particular the inability of such a general model to reproduce the reported dependence of run length on ADP concentration. The novel way that our approach explores parameter space means that any confirmed discrepancies should give new insights into the reaction network model

    Cross-Newell equations for hexagons and triangles

    Get PDF
    The Cross-Newell equations for hexagons and triangles are derived for general real gradient systems, and are found to be in flux-divergence form. Specific examples of complex governing equations that give rise to hexagons and triangles and which have Lyapunov functionals are also considered, and explicit forms of the Cross-Newell equations are found in these cases. The general nongradient case is also discussed; in contrast with the gradient case, the equations are not flux-divergent. In all cases, the phase stability boundaries and modes of instability for general distorted hexagons and triangles can be recovered from the Cross-Newell equations.Comment: 24 pages, 1 figur

    Challenges in microbial ecology: building predictive understanding of community function and dynamics

    No full text
    he importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth’s soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved

    A two-species continuum model for aeolian sand ripples

    Get PDF
    We formulate a continuum model for aeolian sand ripples consisting of two species of grains: a lower layer of relatively immobile clusters, with an upper layer of highly mobile grains moving on top. We predict analytically the ripple wavelength, initial ripple growth rate and threshold saltation flux for ripple formation. Numerical simulations show the evolution of realistic ripple profiles from initial surface roughness via ripple growth and merger.Comment: 9 pages, 3 figure

    Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures

    Get PDF
    Theoretical studies have thus far been unable to model pattern formation during the reaction in this system on physically feasible length and time scales. In this paper, we derive a computational reaction-diffusion model for this system in which most of the input parameters have been determined experimentally. We model the surface on a mesoscopic scale intermediate between the microscopic size of CO islands and the macroscopic length scale of pattern formation. In agreement with experimental investigations [M. Eiswirth et al., Z. Phys. Chem., Neue Folge 144, 59 (1985)], the results from our model divide the CO and O-2 partial pressure parameter space into three regions defined by the level of CO coverage or the presence of sustained oscillations. We see CO fronts moving into oxygen-covered regions, with the 1 x 1 to hex phase change occurring at the leading edge. There are also traveling waves consisting of successive oxygen and CO fronts that move into areas of relatively high CO coverage, and in this case, the phase change is more gradual and of lower amplitude. The propagation speed of these reaction waves is similar to those observed experimentally for CO and oxygen fronts [H. H. Rotermund , J. Chem. Phys. 91, 4942 (1989); H. H. Rotermund , Nature (London) 343, 355 (1990); J. Lauterbach and H. H. Rotermund, Surf. Sci. 311, 231 (1994)]. In the two-dimensional version of our model, the traveling waves take the form of target patterns emitted from surface inhomogeneities.</p

    Spectral quantification of nonlinear behaviour of the nearshore seabed and correlations with potential forcings at Duck, N.C., U.S.A

    Get PDF
    Local bathymetric quasi-periodic patterns of oscillation are identified from monthly profile surveys taken at two shore-perpendicular transects at the USACE field research facility in Duck, North Carolina, USA, spanning 24.5 years and covering the swash and surf zones. The chosen transects are the two furthest (north and south) from the pier located at the study site. Research at Duck has traditionally focused on one or more of these transects as the effects of the pier are least at these locations. The patterns are identified using singular spectrum analysis (SSA). Possible correlations with potential forcing mechanisms are discussed by 1) doing an SSA with same parameter settings to independently identify the quasi-periodic cycles embedded within three potentially linked sequences: monthly wave heights (MWH), monthly mean water levels (MWL) and the large scale atmospheric index known as the North Atlantic Oscillation (NAO) and 2) comparing the patterns within MWH, MWL and NAO to the local bathymetric patterns. The results agree well with previous patterns identified using wavelets and confirm the highly nonstationary behaviour of beach levels at Duck; the discussion of potential correlations with hydrodynamic and atmospheric phenomena is a new contribution. The study is then extended to all measured bathymetric profiles, covering an area of 1100m (alongshore) by 440m (cross-shore), to 1) analyse linear correlations between the bathymetry and the potential forcings using multivariate empirical orthogonal functions (MEOF) and linear correlation analysis and 2) identify which collective quasi-periodic bathymetric patterns are correlated with those within MWH, MWL or NAO, based on a (nonlinear) multichannel singular spectrum analysis (MSSA). (...continued in submitted paper)Comment: 50 pages, 3 tables, 8 figure

    SARS-CoV-2 infection in UK university students: lessons from September-December 2020 and modelling insights for future student return.

    Get PDF
    Funder: Isaac Newton Institute for Mathematical Sciences; Id: http://dx.doi.org/10.13039/501100005347Funder: Wellcome Trust; Id: http://dx.doi.org/10.13039/100004440Funder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265Funder: UKRIFunder: University of Nottingham; Id: http://dx.doi.org/10.13039/501100000837In this paper, we present work on SARS-CoV-2 transmission in UK higher education settings using multiple approaches to assess the extent of university outbreaks, how much those outbreaks may have led to spillover in the community, and the expected effects of control measures. Firstly, we found that the distribution of outbreaks in universities in late 2020 was consistent with the expected importation of infection from arriving students. Considering outbreaks at one university, larger halls of residence posed higher risks for transmission. The dynamics of transmission from university outbreaks to wider communities is complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any detectable signal of spillover to the local population. Secondly, we explored proposed control measures for reopening and keeping open universities. We found the proposal of staggering the return of students to university residence is of limited value in terms of reducing transmission. We show that student adherence to testing and self-isolation is likely to be much more important for reducing transmission during term time. Finally, we explored strategies for testing students in the context of a more transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.This work was supported by EPSRC grant no EP/R014604/1. The authors would also like to thank the Virtual Forum for Knowledge Exchange in Mathematical Sciences (V-KEMS) for the support during the workshop Unlocking higher education Spaces – What Might Mathematics Tell Us? where work on this paper was undertaken. K.J.B. acknowledges support from a University of Nottingham Anne McLaren Fellowship. E.L.F. acknowledges support via K.J.B.’s fellowship and the Nottingham BBSRC Doctoral Training Partnership. M.L.T. was supported by the UK Engineering and Physical Sciences Research Council (grant no. EP/N509620/1). E.B.-P., E.J.N., L.D., J.R.G. and M.J.T. were supported by UKRI through the JUNIPER modelling consortium (grant no. MR/V038613/1). E.M.H., L.D. and M.J.T. were supported by the Medical Research Council through the COVID-19 Rapid Response Rolling Call (grant no. MR/V009761/1). H.B.S. is funded by the Wellcome Trust and the Royal Society (grant no. 202562/Z/16/Z). J.E. is partially funded by the UK Engineering and Physical Sciences Research Council (grant no. EP/T004878/1)

    Equation-Free Analysis of Two-Component System Signalling Model Reveals the Emergence of Co-Existing Phenotypes in the Absence of Multistationarity

    Get PDF
    Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient excursions from a stable state to an unstable excited state, and the switching on and off of a reaction network according to the availability of a constituent chemical species. Here we analyse a detailed stochastic kinetic model of two-component system signalling in bacteria, and show that alternative phenotypes emerge in the absence of these features. We perform a bifurcation analysis of deterministic reaction rate equations derived from the model, and find that they cannot reproduce the whole range of qualitative responses to external signals demonstrated by direct stochastic simulations. In particular, the mixed mode, where stochastic switching and a graded response are seen simultaneously, is absent. However, probabilistic and equation-free analyses of the stochastic model that calculate stationary states for the mean of an ensemble of stochastic trajectories reveal that slow transcription of either response regulator or histidine kinase leads to the coexistence of an approximate basal solution and a graded response that combine to produce the mixed mode, thus establishing its essential stochastic nature. The same techniques also show that stochasticity results in the observation of an all-or-none bistable response over a much wider range of external signals than would be expected on deterministic grounds. Thus we demonstrate the application of numerical equation-free methods to a detailed biochemical reaction network model, and show that it can provide new insight into the role of stochasticity in the emergence of phenotypic diversity
    corecore