24 research outputs found
Use of Riparian Vegetated Filter Strips to Reduce Nitrate and Fecal Contamination in Surface Water
This research assessed fecal bacteria trapping in surface runoff by grass filters and their potential to enhance NO3- removal via denitrification. Grass filter strips 9.0 m long trapped over 99% of the soil in surface runoff in 1992. Fecal coliform removal was less than 75%. In 1993, 9.0 and 4.5 m grass filter strips trapped 99 and 95% of the sediment, respectively. Fecal coliform trapping efficiency was 90% in 9.0 m grass filters and 75% in 4.5 m filters. Fecal streptococci trapping efficiency was 77% in 9.0 m grass filters and only 56% in 4.5 m filters. Fecal coliform concentration in grass filter strip runoff consistently exceeded 200 fecal coliforms per 100 mL. Grass filter strips which minimized sediment loss did not reduce fecal contamination of water to acceptable levels when runoff occurred. Nitrous oxide fluxes were smaller in grass filters than in manured plots. In 1993, N2O loss ranged from 2050 to 11120 mg N2O-N m-2 h-1 in amended soil and 160 to 1060 mg N2O-N m-2 h-1 in grass filter strips. Denitrification was not apparently enhanced in the grass filters relative to the manured soil
A genome-wide association study for diabetic nephropathy genes in African Americans
A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD
Integrative Taxonomy for Continental-Scale Terrestrial Insect Observations
Although 21st century ecology uses unprecedented technology at the largest spatio-temporal scales in history, the data remain reliant on sound taxonomic practices that derive from 18th century science. The importance of accurate species identifications has been assessed repeatedly and in instances where inappropriate assignments have been made there have been costly consequences. The National Ecological Observatory Network (NEON) will use a standardized system based upon an integrative taxonomic foundation to conduct observations of the focal terrestrial insect taxa, ground beetles and mosquitoes, at the continental scale for a 30 year monitoring program. The use of molecular data for continental-scale, multi-decadal research conducted by a geographically widely distributed set of researchers has not been evaluated until this point. The current paper addresses the development of a reference library for verifying species identifications at NEON and the key ways in which this resource will enhance a variety of user communities
Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome
SPTBN1 mutations cause a neurodevelopmental syndrome characterized by intellectual disability, language and motor delays, autism, seizures and other features. The variants disrupt beta II-spectrin function and disturb cytoskeletal organization and dynamics. SPTBN1 encodes beta II-spectrin, the ubiquitously expressed beta-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal beta II-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays;mild to severe intellectual disability;autistic features;seizures;behavioral and movement abnormalities;hypotonia;and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect beta II-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of beta II-spectrin in the central nervous system
Photodepletion with 2-Se-Cl prevents lethal graft-versus-host disease while preserving antitumor immunity.
Acute graft-versus-host-disease (GVHD), limits the use of hematopoietic cell transplant (HCT) to treat a variety of malignancies. Any new therapeutic approach must satisfy three requirements: 1) Prevent GVHD, 2) Maintain anti-pathogen immunity, and 3) Maintain anti-tumor immunity. In prior studies we have shown that the selective photosensitizer 2-Se-Cl eliminates highly alloreactive lymphocytes from the graft prior to HCT preventing GVHD and that antiviral immune responses were preserved following incubation with 2-Se-Cl. In this report, we investigated whether 2-Se-Cl treatment preserves antitumor immunity, and then used high dimensional flow cytometry to identify the determinants of successful immune reconstitution. Donor C57BL/6 splenocytes were cocultured for 4 days with irradiated BALB/c splenocytes and then exposed to 2-Se-Cl. Photodepletion (PD)-treated splenocytes were then infused into lethally irradiated BALB/c mice inoculated with A20 leukemia/lymphoma cells. Recipient mice that received PD-treated splenocytes survived > 100 days without evidence of GVHD or leukemia. In contrast, mice that did not receive PD-treated cells at time of HCT died of leukemia progression. Multiparameter flow cytometry of cytokines and surface markers on peripheral blood samples 15 days after HCT demonstrated unique patterns of immune reconstitution. We found that before clinical disease onset GVHD was marked by functionally exhausted T cells, while tumor clearance and long-term survival were associated with an expansion of polyfunctional T cells, monocytes, and DCs early after transplantation. Taken together these results demonstrate that 2-Se-Cl photodepletion is a new treatment that can facilitate HCT by preventing GVHD while preserving antiviral and anti-tumor immunity
Ruminal Fiber Degradation Kinetics within and among Warm-Season Annual Grasses as Affected by the Brown Midrib Mutation
The objective of this study was to compare the nutritional composition and the neutral detergent fiber (NDF) degradation kinetics of brown midrib (BMR) and non-BMR genotypes within and across warm-season annual grasses. Four commercial varieties (two non-BMR and two BMR) of corn, sorghum, and pearl millet were planted in plots. Forage samples were incubated in the rumen of three rumen-cannulated cows for 0, 3, 6, 12, 24, 48, 96, and 240 h. On an NDF basis, all forage types showed lower acid detergent lignin (ADL) concentrations for BMR genotypes, but the magnitude of the difference differed among forage types. The concentration of undegraded NDF (uNDF; NDF basis) differed among forage types and between genotypes. Corn had the least, pearl millet had the intermediate, and sorghum had the greatest concentration of uNDF. Non-BMR genotypes had greater concentrations of uNDF than BMR genotypes. No interaction existed between forage type and genotype for the concentration of uNDF. In conclusion, although BMR forages may show lower ADL concentrations in the cell wall and greater NDF degradability than non-BMR forages of the same forage type, BMR forages do not always have the least ADL concentration or the greatest NDF degradability when comparing different forage types
Cluster of Oseltamivir-Resistant and Hemagglutinin Antigenically Drifted Influenza A(H1N1)pdm09 Viruses, Texas, USA, January 2020
Four cases of oseltamivir-resistant influenza A(H1N1)pdm09 virus infection were detected among inhabitants of a border detention center in Texas, USA. Hemagglutinin of these viruses belongs to 6B.1A5A-156K subclade, which may enable viral escape from preexisting immunity. Our finding highlights the necessity to monitor both drug resistance and antigenic drift of circulating viruses
Recommended from our members
Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids
Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications