1,255 research outputs found

    Thermal-Boundary-Layer Response to Convected Far-Field Fluid Temperature Changes

    Get PDF
    Fluid flows of varying temperature occur in heat exchangers, nuclear reactors, nonsteady-flow devices, and combustion engines, among other applications with heat transfer processes that influence energy conversion efficiency. A general numerical method was developed with the capability to predict the transient laminar thermal-boundary-layer response for similar or nonsimilar flow and thermal behaviors. The method was tested for the step change in the far-field flow temperature of a two-dimensional semi-infinite flat plate with steady hydrodynamic boundary layer and constant wall temperature assumptions. Changes in the magnitude and sign of the fluid-wall temperature difference were considered, including flow with no initial temperature difference and built-up thermal boundary layer. The equations for momentum and energy were solved based on the Keller-box finite-difference method. The accuracy of the method was verified by comparing with related transient solutions, the steady-state solution, and by grid independence tests. The existence of a similarity solution is shown for a step change in the far-field temperature and is verified by the computed general solution. Transient heat transfer correlations are presented, which indicate that both magnitude and direction of heat transfer can be significantly different from predictions by quasisteady models commonly used. The deviation is greater and lasts longer for large Prandtl number fluids

    3. Personal Relationships between Co-buried Individuals in the Central European Early Bronze Age

    Get PDF
    People were usually buried in single, individual graves in Early Bronze Age Austria and the surrounding areas, but there are some exceptions. In burials of two or more people, it is often the way that bodies were placed in relation to each other that suggests familiarity, if not family. This paper reviews the social relations expressed through co-burials, and aims to better understand relationships between couples, siblings, or parents and children. The chapter particularly highlights mother-child relationships and presents graves of pregnant women and graves of women and children buried together, in order to understand how such individuals were treated by their societies in death. Ages and age gaps between co-buried individuals reveal the most likely ages for life-transitions such as first motherhood and the addition of new family members. The analysis compares evidence from two different, but contemporary cultural groups (Únětice and Unterwölbing) to shed light on prehistoric gender relations, family structures and social organisation through the lens of the burial record

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Integration of natural data within a numerical model of ablative subduction: A possible interpretation for the Alpine dynamics of the Austroalpine crust

    Full text link
    A numerical modelling approach is used to validate the physical and ge- ological reliability of the ablative subduction mechanism during Alpine con- vergence in order to interpret the tectonic and metamorphic evolution of an inner portion of the Alpine belt: the Austroalpine Domain. The model pre- dictions and the natural data for the Austroalpine of the Western Alps agree very well in terms of P-T peak conditions, relative chronology of peak and exhumation events, P-T-t paths, thermal gradients and the tectonic evolu- tion of the continental rocks. These findings suggest that a pre-collisional evolution of this domain, with the burial of the continental rocks (induced by ablative subduction of the overriding Adria plate) and their exhumation (driven by an upwelling flow generated in a hydrated mantle wedge) could be a valid mechanism that reproduces the actual tectono-metamorphic config- uration of this part of the Alps. There is less agreement between the model predictions and the natural data for the Austroalpine of the Central-Eastern Alps. Based on the natural data available in the literature, a critical discus- sion of the other proposed mechanisms is presented, and additional geological factors that should be considered within the numerical model are suggested to improve the fitting to the numerical results; these factors include varia- tions in the continental and/or oceanic thickness, variation of the subduction rate and/or slab dip, the initial thermal state of the passive margin, the oc- currence of continental collision and an oblique convergence.Comment: 11 Figures and 3 Tabe

    Non-Ideal Compressible-Fluid Dynamics Simulations in Orc Turbines with a Discontinuous Galerkin Solver

    Get PDF
    This work aims to show the new capabilities implemented in an in-house discontinuous Galerkin solver for the numerical simulation of Organic Rankine Cycles turbine stages. The RANS equations coupled with a turbulence model are solved to predict the flow features in a multi reference frame, where interfaces between fixed and rotating zones are treated with a mixing plane approach and non-reflecting boundary conditions are used. The thermal pressure-explicit equation of state of Peng-Robinson is used to accurately relate thermodynamic quantities and is supplemented by a polynomial description of the ideal gas contribution to the isobaric specific heat. The solver is assessed with the computation of the flow field through the first stage of an existing axial ORC turbine provided by Turboden S.p.A.

    On the Development of an Implicit Discontinuous Galerkin Solver for Turbulent Real Gas Flows

    Get PDF
    The aim of this work is to describe an efficient implementation of cubic and multiparameter real gas models in an existing discontinuous Galerkin solver to extend its capabilities to the simulation of turbulent real gas flows. The adopted thermodynamic models are van der Waals, Peng–Robinson, and Span–Wagner, which differ from each other in terms of accuracy and computational cost. Convective numerical fluxes across elements interfaces are calculated with a thermodynamic consistent linearized Riemann solver, whereas for boundary conditions, a linearized expression of the generalized Riemann invariants is employed. Transport properties are treated as temperature- and density-dependent quantities through multiparameter correlations. An implicit time integration is adopted; Jacobian matrix and thermodynamic derivatives are obtained with the automatic differentiation tool Tapenade. The solver accuracy is assessed by computing both steady and unsteady real gas test cases available in the literature, and the effect of the mesh size and polynomial degree of approximation on the solution accuracy is investigated. A good agreement with experimental and numerical reference data is observed and specific non-classical phenomena are well reproduced by the solver

    The Cotoncello Shear Zone (Elba Island, Italy): The deep root of a fossil oceanic detachment fault in the Ligurian ophiolites

    Get PDF
    The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island,we investigated for the first time a 10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U–Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle–ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature b500 °C.Wesuggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion.We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work

    Archaeology at the Danube using non-invasive ground and aerial prospection methods to document prehistoric settlement traces at the Bisamberg near Vienna, Austria

    Get PDF
    To link prehistoric settlement activities with a modern mapping of existing monuments on the site, non-invasive aerial and terrestrial prospection methods are used. The LiDAR data catches the course of the presumed prehistoric rampart. The geomagnetic measurements display, among other things, the course of a 250 m long prehistoric ditch. Furthermore, ERT measurements reveal the rampart’s inner construction

    Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    Get PDF
    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems

    Effect of Inclination of Twin Jets Impinging a Heated Wall

    Get PDF
    This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent).The twin slot jets are located on a confining adiabatic wall at a distance of 8 slot jet width. Convective heat is investigated numerically examining the effect of Reynolds number (Re) and jet inclination angle (). This problem is relevant to a wide range of practical applications including nuclear engineering devices, manufacturing, material processing, electronic cooling, drying paper or textile, tempering of glass, etc. The numerical investigation is performed using two dimensional large eddy simulations (LES) approach with Smagorinsky sub-grid scale (SGS) models. The results show the presence of a complex flow resulting from the interaction of the two jets. When the impingement angle is reduced from 0° (perpendicular impingement) to 60°, the position of the stagnation points are modified and therefore the peaks of the Nusselt number locations on the impingement surface and their magnitude, vary. For largest Reynolds number Nusselt number is enhanced for all types of inclination. The averaged Nusselt number shows that the perpendicular impingement gives better heat transfer than that of the oblique jets. The poor heat transfer is obtained for the parallel oblique jets. For the same angle, divergent jets give smallest heat transfer than the convergent jets
    corecore