298 research outputs found

    Counterparts to the Nuclear Bulge X-ray source population

    Full text link
    We present an initial matching of the source positions of the Chandra Nuclear Bulge X-ray sources to the new UKIDSS-GPS near-infrared survey of the Nuclear Bulge. This task is made difficult by the extremely crowded nature of the region, despite this, we find candidate counterparts to ~50% of the X-ray sources. We show that detection in the J-band for a candidate counterpart to an X-ray source preferentially selects those candidate counterparts in the foreground whereas candidate counterparts with only detections in the H and K-bands are more likely to be Nuclear Bulge sources. We discuss the planned follow-up for these candidate counterparts.Comment: 5 pages, 2 figures, 1 table, published in the proceedings of "A population Explosion", AIP Conference Proceedings Volume 1010, pp. 117-12

    The Nuclear Bulge extinction

    Full text link
    We present a new, high resolution (5" per pixel) near-infrared extinction map of the Nuclear Bulge using data from the UKIDSS-GPS. Using photometry from the J, H and K-bands we show that the extinction law parameter is also highly variable in this region on similar scales to the absolute extinction. We show that only when this extinction law variation is taken into account can the extinction be measured consistently at different wavelengths.Comment: 3 pages, 2 figures, published in the proceedings of "A population Explosion", AIP Conference Proceedings Volume 1010, pp. 168-17

    Chandra Localizations of LMXBs: IR Counterparts and their Properties

    Get PDF
    We present new Chandra observations of the low mass X-ray binaries (LMXBs) X1624−490, X1702−429, and X1715−321 and the search for their Infrared (IR) counterparts. We also report on early results from our dedicated IR survey of LMXBs. The goal of this program is to investigate whether IR counterparts can be identified through unique IR colors and to trace the origin of the IR emission in these systems

    Complex small-scale structure in the infrared extinction towards the Galactic Centre

    Full text link
    A high level of complex structure, or ``granularity'', has been observed in the distribution of infrared-obscuring material towards the Galactic Centre (GC), with a characteristic scale of 5arcsec - 15arcsec, corresponding to 0.2 - 0.6pc at a GC distance of 8.5kpc. This structure has been observed in ISAAC images which have a resolution of 0.6arcsec, significantly higher than that of previous studies of the GC. We have discovered granularity throughout the GC survey region, which covers an area of 1.6deg x 0.8deg in longitude and latitude respectively (300pc x 120pc at 8.5kpc) centred on Sgr A*. This granularity is variable over the whole region, with some areas exhibiting highly structured extinction in one or more wavebands and other areas displaying no structure and a uniform stellar distribution in all wavebands. The granularity does not appear to correspond to longitude, latitude or radial distance from Sgr A*. We find that regions exhibiting high granularity are strongly associated with high stellar reddening.Comment: 5 pages, 3 figures, accepted for publication in ApJ

    The Path to Buried Treasure: Paving the Way to the FLAMINGOS-2 Galactic Center Survey with IR and X-ray Observations

    Get PDF
    I describe the IR and X-ray campaign we have undertaken to determine the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center. These results will provide the input to the FLAMINGOS-2 Galactic Center Survey (F2GCS). With FLAMINGOS-2's multi-object IR spectrograph we will obtain 1000s of IR spectra of candidate X-ray source counterparts, allowing us to efficiently identify the nature of these sources, and thus dramatically increase the number of known X-ray binaries and CVs in the Milky Way.Comment: To be published in Proceedings of 'A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments', 28 Oct - 2 Nov, St. Pete Beach, FL; eds. R.M. Bandyopadhyay, S. Wachter, D. Gelino, C.R. Gelino; AIP Conference Proceedings Serie

    X-Ray Binaries and the Dynamical States of Globular Clusters

    Full text link
    We summarize and discuss recent work (Fregeau 2007) that presents the confluence of three results suggesting that most Galactic globular clusters are still in the process of core contraction, and have not yet reached the thermal equilibrium phase driven by binary scattering interactions: that 1) the three clusters that appear to be overabundant in X-ray binaries per unit encounter frequency are observationally classified as "core-collapsed," 2) recent numerical simulations of cluster evolution with primordial binaries show that structural parameters of clusters in the binary-burning phase agree only with "core-collapsed" clusters, and 3) a cluster in the binary-burning phase for the last few Gyr should have about 5 times more dynamically formed X-ray sources than if it were in the core contraction phase for the same time.Comment: Conference proceedings from "A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments," 28 Oct - 2 Nov, St. Petersburg Beach, FL. 4 page

    Spitzer Space Telescope Observations of Low Mass X-ray Binaries

    Get PDF
    We present preliminary results from our archival Spitzer Space Telescope program aimed at characterizing the mid-IR properties of compact objects, both isolated and in binary systems, i.e. white dwarfs, X-ray binaries, cataclysmic variables, and magnetars. Most of these sources are too faint at mid-IR wavelengths to be observable from the ground, so this study provides the very first comprehensive look at the mid-IR emission of these objects. Here we present our results for the low mass X-ray binaries. We considered all of the systems listed in the most recent catalog of Liu et al. (2007) that have known optical counterparts. The particular goals of our projects encompass: to establish the mid-IR spectral energy distribution, to search for the signatures of jets, circumbinary disks, low mass or planetary companions and debris disks, and to study the local environment of these sources.Comment: 6 pages, updated and expanded version of article to appear in Proceedings of "A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments", 28 Oct - 2 Nov, St. Pete Beach, FL; eds. R.M. Bandyopadhyay, S. Wachter, D. Gelino, C.R. Gelino; AIP Conference Proceedings Serie

    INTEGRAL and New Classes of High-Mass X-ray Binaries

    Full text link
    The gamma-ray observatory INTEGRAL, launched in October 2002, produces a wealth of discoveries and new results on compact high energy Galactic objects, nuclear gamma-ray line emission, diffuse line and continuum emission, cosmic background radiation, AGN and high energy transients. Two important serendipitous discoveries made by the INTEGRAL mission are new classes of X-ray binaries, namely the highly-obscured high-mass X-ray binaries, and the super-giant fast transients. In this paper I will review the current status of these discoveries.Comment: 3 pages, 1 figure, submitted; Proceedings "The nature and evolution of X-ray binaries in diverse environments", St Petersburg/FL, USA, 28 Oct - 02 Nov 200

    Multiwavelength Studies of X-ray Binaries

    Full text link
    Simultaneous multiwavelength studies of X-ray binaries have been remarkably successful and resulted in improved physical constraints, a new understanding of the dependence of mass accretion rate on X-ray state, as well as insights on the time-dependent relationship between disk structure and mass-transfer rate. I will give some examples of the tremendous gains we have obtained in our understanding of XRBs by using multiwavelength observations. I will end with an appeal that while Spitzer cryogens are still available a special effort be put forth to obtaining coordinated observations including the mid-infrared: Whereas the optical and near-IR originate as superpositions of the secondary star and of accretion processes, the mid-IR crucially detects jet synchrotron emission from NSs that is virtually immeasurable at other wavelengths. A further benefit of Spitzer observations is that mid-infrared wavelengths can easily penetrate regions that are heavily obscured. Many X-ray binaries lie in the Galactic plane and as such are often heavily obscured in the optical by interstellar extinction. The infrared component of the SED, vital to the study of jets and dust, can be provided {\it only} by Spitzer; in the X-rays we currently have an unprecedented six satellites available and in the optical and radio dozens of ground-based facilities to complement the Spitzer observations.Comment: 5 pages including figures, in conference proceedings A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments, eds. Bandyopadhyay, Wachter, Gelino, & Gelin

    GRO J1744-28, search for the counterpart: infrared photometry and spectroscopy

    Get PDF
    Using VLT/ISAAC, we detected 2 candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, within the X-ray error circles of XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied 3 different extinction corrections; one for an all-sky value, one for a Galactic Bulge value and one for a local value. We find the local value, with an extinction law of alpha = 3.23 +- 0.01 is the only correction that results in colours and magnitudes for both bright and faint counterparts consistent with a small range of spectral types, and for the bright counterpart, consistent with the spectroscopic identification. Photometry of the faint candidate indicates it is a K7/M0 V star at a distance of 3.75 +- 1 kpc. This star would require a very low inclination angle (i < 9deg) to satisfy the mass function constraints; however it cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate it is most likely a G/K III star. The spectrum does not show Br-gamma emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on a probable counterpart by the calculations of Rappaport & Joss (1997) for an evolved star that has had its envelope stripped. The mass function indicates the counterpart should have M < 0.3 Msol for an inclination of i >= 15deg; a stripped giant, or a main sequence M3+ V star are consistent with this mass-function constraint. In both cases mass-transfer, if present, will be by wind-accretion as the counterpart will not fill its Roche lobe given the observed orbital period. The derived magnetic field of 2.4 x 10^{11} G will inhibit accretion by the propeller effect, hence its quiescent state.Comment: 12 pages, 6 figures, 4 table, MNRAS accepted Changes to the content and an increased analysis of the Galactic centre extinctio
    • 

    corecore