93 research outputs found
Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins
Cardiovascular disease (CVD) risk in type 2 diabetes (T2DM) is only partially reduced by intensive glycemic control. Diabetic dyslipidemia is suggested to be an additional important contributor to CVD risk in T2DM. Multiple lipid lowering medications effectively reduce fasting LDL cholesterol and triglycerides concentrations and several of them routinely reduce CVD risk. However, in contemporary Western societies the vasculature is commonly exposed to prolonged postprandial hyperlipidemia. Metabolism of these postprandial carbohydrates and lipids yields multiple proatherogenic products. Even a transient increase in these factors may worsen vascular function and induces impaired endothelial dependent vasodilatation, a predictor of atherosclerosis and future cardiovascular events. There is a recent increased appreciation for the role of gut-derived incretin hormones in controlling the postprandial metabolic milieu. Incretin-based medications have been developed and are now used to control postprandial hyperglycemia in T2DM. Recent data indicate that these medications may also have profound effects on postprandial lipid metabolism and may favorably influence several cardiovascular functions. This review discusses (1) the postprandial state with special emphasis on postprandial lipid metabolism and its role in endothelial dysfunction and cardiovascular risk, (2) the ability of incretins to modulate postprandial hyperlipidemia and (3) the potential of incretin-based therapeutic strategies to improve vascular function and reduce CVD risk
Actos Now for the prevention of diabetes (ACT NOW) study
Abstract Background Impaired glucose tolerance (IGT) is a prediabetic state. If IGT can be prevented from progressing to overt diabetes, hyperglycemia-related complications can be avoided. The purpose of the present study was to examine whether pioglitazone (ACTOS®) can prevent progression of IGT to type 2 diabetes mellitus (T2DM) in a prospective randomized, double blind, placebo controlled trial. Methods/Design 602 IGT subjects were identified with OGTT (2-hour plasma glucose = 140–199 mg/dl). In addition, IGT subjects were required to have FPG = 95–125 mg/dl and at least one other high risk characteristic. Prior to randomization all subjects had measurement of ankle-arm blood pressure, systolic/diastolic blood pressure, HbA1C, lipid profile and a subset had frequently sampled intravenous glucose tolerance test (FSIVGTT), DEXA, and ultrasound determination of carotid intima-media thickness (IMT). Following this, subjects were randomized to receive pioglitazone (45 mg/day) or placebo, and returned every 2–3 months for FPG determination and annually for OGTT. Repeat carotid IMT measurement was performed at 18 months and study end. Recruitment took place over 24 months, and subjects were followed for an additional 24 months. At study end (48 months) or at time of diagnosis of diabetes the OGTT, FSIVGTT, DEXA, carotid IMT, and all other measurements were repeated. Primary endpoint is conversion of IGT to T2DM based upon FPG ≥ 126 or 2-hour PG ≥ 200 mg/dl. Secondary endpoints include whether pioglitazone can: (i) improve glycemic control (ii) enhance insulin sensitivity, (iii) augment beta cell function, (iv) improve risk factors for cardiovascular disease, (v) cause regression/slow progression of carotid IMT, (vi) revert newly diagnosed diabetes to normal glucose tolerance. Conclusion ACT NOW is designed to determine if pioglitazone can prevent/delay progression to diabetes in high risk IGT subjects, and to define the mechanisms (improved insulin sensitivity and/or enhanced beta cell function) via which pioglitazone exerts its beneficial effect on glucose metabolism to prevent/delay onset of T2DM. Trial Registration clinical trials.gov identifier: NCT0022096
Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans
The authors describe a new approach to studying cellular lipid profiles and
propose a compensatory mechanism that may help maintain the normal membrane
function of adipocytes in the context of obesity
Elevated Non-Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise Early Embryo Physiology
Elevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism
Exercise Training Is Not Associated With Improved Levels of C-Reactive Protein or Adiponectin
The purpose of this study was to determine the effect of exercise training on the levels of C-reactive protein (CRP) and adiponectin, and to assess whether exercise-induced changes in insulin resistance could be explained in part by changes in these inflammation markers. Study participants included 51 middle-aged (45.3 +/- 8.3 years; mean +/- SD), overweight (33.7 +/- 4.8 BMI), insulin-resistant, nondiabetic individuals. Subjects had their insulin sensitivity, body fat, CRP, and adiponectin levels measured, and their predicted maximal fitness calculated before and after 16 weeks of moderate, intense, or no exercise training. Modest improvements in fitness, body composition, and insulin sensitivity were observed, but these changes were not associated with decreased CRP or increased adiponectin levels, even when subjects were stratified by their change in fitness or obesity. Regression analysis demonstrated that the change in percentage of body fat was significantly related to changes in insulin sensitivity, whereas changes in VO2 MAX, CRP, and adiponectin were not. Participation in moderate to intense exercise was not associated with improved measures of chronic inflammation markers, as measured by CRP and adiponectin. Moreover, improvements in insulin sensitivity resulting from exercise or modest weight loss did not appear to be related to changes in these markers. (c) 2005 Elsevier Inc. All rights reserved
- …