81 research outputs found

    Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster

    Get PDF
    Lactate dehydrogenase (LDH) catalyzes the conversion of glycolysis-derived pyruvate to lactate. Lactate has been shown to play key roles in brain energetics and memory formation. However, lactate levels are elevated in aging and Alzheimer\u27s disease patients, and it is not clear whether lactate plays protective or detrimental roles in these contexts. Here we show that Ldh transcript levels are elevated and cycle with diurnal rhythm in the heads of aged flies and this is associated with increased LDH protein, enzyme activity, and lactate concentrations. To understand the biological significance of increased Ldh gene expression, we genetically manipulated Ldh levels in adult neurons or glia. Overexpression of Ldh in both cell types caused a significant reduction in lifespan whereas Ldh down-regulation resulted in lifespan extension. Moreover, pan-neuronal overexpression of Ldh disrupted circadian locomotor activity rhythms and significantly increased brain neurodegeneration. In contrast, reduction of Ldh in neurons delayed age-dependent neurodegeneration. Thus, our unbiased genetic approach identified Ldh and lactate as potential modulators of aging and longevity in flies

    Different Poses for Ligand and Chaperone in Inhibitor Bound Hsp90 and GRP94: Implications for Paralog-specific Drug Design

    Get PDF
    Hsp90 chaperones contain an N-terminal ATP binding site that has been effectively targeted by competitive inhibitors. Despite the myriad of inhibitors, none to date have been designed to bind specifically to just one of the four mammalian hsp90 paralogs, which are cytoplasmic Hsp90α and β, ER GRP94, and mitochondrial Trap-1. Given that each of the hsp90 paralogs is responsible for chaperoning a distinct set of client proteins, specific targeting of one hsp90 paralog may result in higher efficacy and therapeutic control. Specific inhibitors may also help elucidate the biochemical roles of each hsp90 paralog. Here we present side by side comparisons of the structures of yeast Hsp90 and mammalian GRP94, bound to the pan-hsp90 inhibitors Geldanamycin and Radamide. These structures reveal paralog specific differences in the Hsp90 and GRP94 conformations in response to Geldanamycin binding. We also report significant variation in the pose and disparate binding affinities for the Geldanamycin-Radicicol chimera Radamide when bound to the two paralogs, which may be exploited in the design of paralog-specific inhibitors

    Advancing Equity Planning Now

    Get PDF
    What can planners do to restore equity to their craft? Drawing upon the perspectives of a diverse group of planning experts, Advancing Equity Planning Now places the concepts of fairness and equal access squarely in the center of planning research and practice. Editors Norman Krumholz and Kathryn Wertheim Hexter provide essential resources for city leaders and planners, as well as for students and others, interested in shaping the built environment for a more just world.Advancing Equity Planning Now remind us that equity has always been an integral consideration in the planning profession. The historic roots of that ethical commitment go back more than a century. Yet a trend of growing inequality in America, as well as other recent socio-economic changes that divide the wealthiest from the middle and working classes, challenge the notion that a rising economic tide lifts all boats. When planning becomes mere place-making for elites, urban and regional planners need to return to the fundamentals of their profession. Although they have not always done so, planners are well-positioned to advocate for greater equity in public policies that address the multiple objectives of urban planning including housing, transportation, economic development, and the removal of noxious land uses in neighborhoods

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore