33 research outputs found

    A longitudinal examination of adolescent response inhibition: neural differences before and after the initiation of heavy drinking.

    No full text
    RationaleResponse inhibition abnormalities contribute to several maladaptive behaviors commonly observed during adolescence, including heavy drinking.ObjectivesThe present study aimed to determine whether abnormalities in brain response during response inhibition predate or follow adolescents' transition into heavy drinking, which is pivotal in identifying the neural antecedents and consequences of adolescent alcohol use.MethodsLongitudinal functional magnetic resonance imaging (fMRI) acquired during a response inhibition task was collected on adolescents before the onset of heavy drinking and then again on the same scanner approximately 3 years later. Adolescents who transitioned into heavy drinking (n = 20) were matched to continuously nondrinking adolescents (n = 20) on baseline and follow-up demographic and developmental variables.ResultsDuring no-go relative to go trials, participants showed responses common to inhibitory circuitry: frontal (e.g., pre-supplementary motor area), temporal, and parietal regions. A repeated measures analysis of covariance revealed that adolescents who later transitioned into heavy drinking showed less fMRI response contrast at baseline than continuous nondrinkers in frontal, parietal, subcortical, and cerebellar regions (p < 0.01, clusters >756 μl), then increased activation after the onset of heavy drinking in frontal, parietal, and cerebellar areas.ConclusionsFuture heavy drinkers showed less activation of inhibitory circuitry before the onset of heavy drinking. After transitioning into heavy drinking, they showed more activation during response inhibition than nondrinking controls. These results contribute to the growing literature suggesting that neural vulnerabilities exist prior to the onset of substance use, and the initiation of heavy drinking may lead to additional alterations in brain functioning

    Genetic underpinnings of risky behaviour relate to altered neuroanatomy

    Full text link
    Previous research points to the heritability of risk-taking behaviour. However, evidence on how genetic dispositions are translated into risky behaviour is scarce. Here, we report a genetically informed neuroimaging study of real-world risky behaviour across the domains of drinking, smoking, driving and sexual behaviour in a European sample from the UK Biobank (N = 12,675). We find negative associations between risky behaviour and grey-matter volume in distinct brain regions, including amygdala, ventral striatum, hypothalamus and dorsolateral prefrontal cortex (dlPFC). These effects are replicated in an independent sample recruited from the same population (N = 13,004). Polygenic risk scores for risky behaviour, derived from a genome-wide association study in an independent sample (N = 297,025), are inversely associated with grey-matter volume in dlPFC, putamen and hypothalamus. This relation mediates roughly 2.2% of the association between genes and behaviour. Our results highlight distinct heritable neuroanatomical features as manifestations of the genetic propensity for risk taking

    Associations between alcohol consumption and gray and white matter volumes in the UK Biobank

    No full text
    Heavy alcohol consumption has been associated with brain atrophy, neuronal loss, and poorer white matter fiber integrity. However, there is conflicting evidence on whether light-to-moderate alcohol consumption shows similar negative associations with brain structure. To address this, we examine the associations between alcohol intake and brain structure using multimodal imaging data from 36,678 generally healthy middle-aged and older adults from the UK Biobank, controlling for numerous potential confounds. Consistent with prior literature, we find negative associations between alcohol intake and brain macrostructure and microstructure. Specifically, alcohol intake is negatively associated with global brain volume measures, regional gray matter volumes, and white matter microstructure. Here, we show that the negative associations between alcohol intake and brain macrostructure and microstructure are already apparent in individuals consuming an average of only one to two daily alcohol units, and become stronger as alcohol intake increases
    corecore