74 research outputs found

    Exponential Dowling structures

    Get PDF
    The notion of exponential Dowling structures is introduced, generalizing Stanley's original theory of exponential structures. Enumerative theory is developed to determine the M\"obius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley's study of permutations associated with exponential structures leads to a similar vein of study for exponential Dowling structures. In particular, for the extended r-divisible partition lattice we show the M\"obius function is, up to a sign, the number of permutations in the symmetric group on rn+k elements having descent set {r, 2r, ..., nr}. Using Wachs' original EL-labeling of the r-divisible partition lattice, the extended r-divisible partition lattice is shown to be EL-shellable.Comment: 17 page

    The Rees product of posets

    Full text link
    We determine how the flag f-vector of any graded poset changes under the Rees product with the chain, and more generally, any t-ary tree. As a corollary, the M\"obius function of the Rees product of any graded poset with the chain, and more generally, the t-ary tree, is exactly the same as the Rees product of its dual with the chain, respectively, t-ary chain. We then study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give a bijective proof that the M\"obius function of this poset can be expressed as n times a signed derangement number. From this we derive a new bijective proof of Jonsson's result that the M\"obius function of the Rees product of the Boolean algebra with the chain is given by a derangement number. Using poset homology techniques we find an explicit basis for the reduced homology and determine a representation for the reduced homology of the order complex of the Rees product of the cubical lattice with the chain over the symmetric group.Comment: 21 pages, 1 figur

    Some combinatorial identities appearing in the calculation of the cohomology of Siegel modular varieties

    Get PDF
    In the computation of the intersection cohomology of Shimura varieties, or of the L2L^2 cohomology of equal rank locally symmetric spaces, combinatorial identities involving averaged discrete series characters of real reductive groups play a large technical role. These identities can become very complicated and are not always well-understood (see for example the appendix of [8]). We propose a geometric approach to these identities in the case of Siegel modular varieties using the combinatorial properties of the Coxeter complex of the symmetric group. Apart from some introductory remarks about the origin of the identities, our paper is entirely combinatorial and does not require any knowledge of Shimura varieties or of representation theory.Comment: 17 pages, 1 figure; to appear in Algebraic Combinatoric

    Negative qq-Stirling numbers

    Get PDF
    International audienceThe notion of the negative qq-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring the negative qq-binomial, we show the classical qq -Stirling numbers of the second kind can be expressed as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in qq and (1+q)(1+q). We extend this enumerative result via a decomposition of the Stirling poset, as well as a homological version of Stembridge’s q=−1q=-1 phenomenon. A parallel enumerative, poset theoretic and homological study for the qq-Stirling numbers of the first kind is done beginning with de Médicis and Leroux’s rook placement formulation. Letting t=1+qt=1+q we give a bijective combinatorial argument à la Viennot showing the (q;t)(q; t)-Stirling numbers of the first and second kind are orthogonal.La notion de la qq-binomial négative était introduite par Fu, Reiner, Stanton et Thiem. Réfléchissant la qq-binomial négative, nous démontrons que les classiques qq-nombres de Stirling de deuxième espèce peuvent être exprimés comme une paire de statistiques sur un sous-ensemble des mots de croissance restreinte. Les expressions résultantes sont les polynômes en qq et 1+q1+q. Nous étendons ce résultat énumératif via une décomposition du poset de Stirling, ainsi que d’une version homologique du q=−1q=-1 phénomène de Stembridge. Un parallèle énumératif, poset théorique et étude homologique des qq-nombres de Stirling de première espèce se fait en commençant par la formulation du placement des tours par suite des auteurs de Médicis et Leroux. On laisse t=1+qt=1+q et on donne les arguments combinatoires et bijectifs à la Viennot qui démontrent que les (q;t)(q;t)-nombres de Stirling de première et deuxième espèces sont orthogonaux
    • …
    corecore