16 research outputs found

    PICA ischemic stroke: The importance of urgent neurosurgical treatment

    No full text
    The posterior inferior cerebellar artery (PICA) has a unique anatomical complexity, which is of great clinical importance and is involved in many pathologies, such as aneurysm, ischemic stroke, neurovascular compression syndrome (NVCS), arteriovenous malformation (AVM) and brain tumour (1). PICA has a sinuous and variable trajectory, divided into 5 segments. PICA infarction usually manifests lateral bulbar syndrome and is more likely to cause mass effects. PICA frequently compresses the bulb and cranial nerves, resulting in various neurovascular compression syndromes (NVCS) (2). The ischemic stroke caused by thromboembolism in the PICA segment is accounted for more than 2% of all cases of ischemic stroke (3). Moreover, it tends to be underdiagnosed due to the symptomatology, represented usually by vertigo which mimics a possible peripheral vestibulopathy (4).  &nbsp

    The Golgi Apparatus: A Key Player in Innate Immunity

    No full text
    The Golgi apparatus, long recognized for its roles in protein processing and vesicular trafficking, has recently been identified as a crucial contributor to innate immune signaling pathways. This review discusses our expanding understanding of the Golgi apparatus’s involvement in initiating and activating these pathways. It highlights the significance of membrane connections between the Golgi and other organelles, such as the endoplasmic reticulum, mitochondria, endosomes, and autophagosomes. These connections are vital for the efficient transmission of innate immune signals and the activation of effector responses. Furthermore, the article delves into the Golgi apparatus’s roles in key immune pathways, including the inflammasome-mediated activation of caspase-1, the cGAS-STING pathway, and TLR/RLR signaling. Overall, this review aims to provide insights into the multifunctional nature of the Golgi apparatus and its impact on innate immunity

    Unraveling the Intricate Link: Deciphering the Role of the Golgi Apparatus in Breast Cancer Progression

    No full text
    Breast cancer represents a paramount global health challenge, warranting intensified exploration of the molecular underpinnings influencing its progression to facilitate the development of precise diagnostic instruments and customized therapeutic regimens. Historically, the Golgi apparatus has been acknowledged for its primary role in protein sorting and trafficking within cellular contexts. However, recent findings suggest a potential link between modifications in Golgi apparatus function and organization and the pathogenesis of breast cancer. This review delivers an exhaustive analysis of this correlation. Specifically, we examine the consequences of disrupted protein glycosylation, compromised protein transport, and inappropriate oncoprotein processing on breast cancer cell dynamics. Furthermore, we delve into the impacts of Golgi-mediated secretory routes on the release of pro-tumorigenic factors during the course of breast cancer evolution. Elucidating the nuanced interplay between the Golgi apparatus and breast cancer can pave the way for innovative therapeutic interventions and the discovery of biomarkers, potentially enhancing the diagnostic, prognostic, and therapeutic paradigms for afflicted patients. The advancement of such research could substantially expedite the realization of these objectives

    Successful Surgical Treatment of a Giant Intraventricular Meningioma: A Case Report and Literature Review

    No full text
    In our study, we document the case of a 48-year-old patient who presented at our clinic with various neurological disturbances. Magnetic Resonance Imaging revealed the presence of an intraventricular meningioma located in the body of the left lateral ventricle measuring 60 mm in diameter. This tumor was classified as a giant meningioma, accompanied by a significant amount of digitiform-type edema. A surgical procedure was conducted, resulting in a gross total resection of the tumor. Histopathological analysis identified the tumor as a fibrous meningioma. Postoperative assessments, as well as follow-ups conducted at 3 months and 1 year post-surgery, indicated considerable neurological improvement. The patient exhibited a remission of hemiparesis and gait disturbances along with a marginal improvement in the status of expressive aphasia. This case report underscores the significance of achieving total and safe resection of the tumor and includes an analysis of various cases from the literature, particularly focusing on those that describe minimally invasive surgical approaches and highlight the benefits of radiosurgery in the treatment of giant intraventricular meningiomas

    An Important Step in Neuroscience: Camillo Golgi and His Discoveries

    No full text
    Camillo Golgi (Figure 1) is one of the most prestigious personalities of modern medicine [...

    Surgical Approach and Considerations for Compressive Thoracic Intraspinal Osteochondroma in Familial Hereditary Multiple Exostosis

    No full text
    Introduction: Hereditary multiple exostosis or hereditary multiple osteochondromas is a very rare clinical condition. Usually, these lesions tend to occur in the pediatric population, remaining silent until adulthood. Moreover, current studies show a small prevalence in the male population. The osteochondromas usually occur at sites with great bone activity and turnover, such as the diaphysis or metaphyseal plates (especially in children) of long bones. Their appearance in short bones (such as vertebrae) is very rare. Case presentation: We present a case of familial HME in a 53-year-old female patient with a very uncommon clinical description of the disease. The patient presented at our hospital with Frankel D-type paraparesis, with multiple osteochondromas (located at the right humerus, bilateral femurs, right tibia, and hip joints, besides the numerous ones over the spinal column) and urinary incontinence. She was suffering from bilateral coxarthrosis and gonarthrosis, which limited severely the range of her movements. An early menopause status was brought into consideration by the patient, being installed circa 15 years before, at 38 years old. She was currently in treatment with bisphosphonates for her concomitant osteoporosis. Conclusions: Despite the relatively rare nature of the disease, it may be an important concern for the patient’s quality of life. Intraspinal processes may trigger paraparesis or other neurological statuses, which may require a surgical treatment. The nature of the lesions is usually benign and do not require further radio- or chemotherapy

    Wilhelm von Waldeyer: Important Steps in Neural Theory, Anatomy and Citology

    No full text
    Heinrich Wilhelm Gottfried von Waldeyer-Harz is regarded as a significant anatomist who helped the entire medical world to discover and develop new techniques in order to improve patient treatment as well as decrease death rates. He discovered fascia propria recti in 1899, which is important in total mesorectal excision which improves cancer treatment as well as outcomes. He played an important role in developing the neuron theory which states that the nervous system consists of multiple individual cells, called neurons, which currently stands as the basis of the impulse transmission of neurons. Waldeyer was also interested in cytology, where he made a substantial contribution, being the first who adopted the name “Chromosome”. Therefore, he accelerated the progress of what it is now known as Genetics. In conclusion, starting from the Fascia propria recti and continuing with great discoveries in cytology and neuron theory, Wilhelm von Waldeyer represents a key person in what we today call medicine

    Genomic Determinants of Knee Joint Biomechanics: An Exploration into the Molecular Basis of Locomotor Function, a Narrative Review

    No full text
    In recent years, the nexus between genetics and biomechanics has garnered significant attention, elucidating the role of genomic determinants in shaping the biomechanical attributes of human joints, specifically the knee. This review seeks to provide a comprehensive exploration of the molecular basis underlying knee joint locomotor function. Leveraging advancements in genomic sequencing, we identified specific genetic markers and polymorphisms tied to key biomechanical features of the knee, such as ligament elasticity, meniscal resilience, and cartilage health. Particular attention was devoted to collagen genes like COL1A1 and COL5A1 and their influence on ligamentous strength and injury susceptibility. We further investigated the genetic underpinnings of knee osteoarthritis onset and progression, as well as the potential for personalized rehabilitation strategies tailored to an individual’s genetic profile. We reviewed the impact of genetic factors on knee biomechanics and highlighted the importance of personalized orthopedic interventions. The results hold significant implications for injury prevention, treatment optimization, and the future of regenerative medicine, targeting not only knee joint health but joint health in general

    Case Study of a Complex Neurovascular Disorder: Choroidal Arteriovenous Malformation

    No full text
    This study conducts an in-depth analysis of the management of a complex arteriovenous malformation (AVM) in a 44-year-old individual, who initially manifested with acute left hemiparesis and progressively declined into a comatose state. Diagnostic neuroimaging identified a substantial right fronto-temporal intraparenchymal hematoma via a CT scan. Cerebral angiography further elucidated a choroidal AVM originating from the anterior choroidal artery, accompanied by intranidal aneurysms. The elected treatment strategy was the surgical excision of the AVM. The procedure achieved complete removal of the intracranial AVM, situated in a neurologically sensitive region, leading to notable neurological recovery. This study thoroughly explores and critically evaluates a wide spectrum of treatment approaches for intracranial arteriovenous malformations, including novel endovascular therapies. Despite extensive discourse on AVM in contemporary literature, this report is among the few documenting the treatment of a choroidal AVM via a microsurgical technique, and highlights various therapeutic options

    Migraine: Advances in the Pathogenesis and Treatment

    No full text
    This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care
    corecore