6 research outputs found

    Development of selection indices for improvement of seed yield and lipid composition in bambara groundnut (Vigna subterranea (l.) verdc.)

    Get PDF
    The underutilised grain legume bambara groundnut (Vigna subterranea) has the potential to contribute significantly to nutritional security. However, the lack of commercial cultivars has hindered its wider adoption and utilisation as a food source. The development of competitive cultivars is impeded by (1) lack of systematic data describing variation in nutritional composition within the gene pool, and (2) a poor understanding of how concentrations of different nutritional components interact. In this study, we analysed seed lipid and protein concentration and lipid composition within a collection of 100 lines representing the global gene pool. Seed protein and lipid varied over twofold with a normal distribution, but no significant statistical correlation was detected between the two components. Seed lipid concentration (4.2–8.8 g/100 g) is primarily determined by the proportion of oleic acid (r2 = 0.45). Yield and composition data for a subset of 40 lines were then used to test selection parameters for high yielding, high lipid breeding lines. From five selection indices tested using 15 scenarios, an index based on the seed number, seed weight, and oleic acid yielded a >50% expected increase in each of the mean values of seed number, pod dry weight, seed dry weight, and seed size, as well as an expected 7% increase in seed lipid concentration

    Challenges for FAIR-compliant description and comparison of crop phenotype data with standardized controlled vocabularies

    Get PDF
    Crop phenotypic data underpin many pre-breeding efforts to characterize variation within germplasm collections. Although there has been an increase in the global capacity for accumulating and comparing such data, a lack of consistency in the systematic description of metadata often limits integration and sharing. We therefore aimed to understand some of the challenges facing findable, accesible, interoperable and reusable (FAIR) curation and annotation of phenotypic data from minor and underutilized crops. We used bambara groundnut (Vigna subterranea) as an exemplar underutilized crop to assess the ability of the Crop Ontology system to facilitate curation of trait datasets, so that they are accessible for comparative analysis. This involved generating a controlled vocabulary Trait Dictionary of 134 terms. Systematic quantification of syntactic and semantic cohesiveness of the full set of 28 crop-specific COs identified inconsistencies between trait descriptor names, a relative lack of cross-referencing to other ontologies and a flat ontological structure for classifying traits. We also evaluated the Minimal Information About a Phenotyping Experiment and FAIR compliance of bambara trait datasets curated within the CropStoreDB schema. We discuss specifications for a more systematic and generic approach to trait controlled vocabularies, which would benefit from representation of terms that adhere to Open Biological and Biomedical Ontologies principles. In particular, we focus on the benefits of reuse of existing definitions within pre- and post-composed axioms from other domains in order to facilitate the curation and comparison of datasets from a wider range of crops. Database URL: https://www.cropstoredb.org/cs_bambara.html

    Applying molecular genetics to underutilised species – problems and opportunities

    Get PDF
    Molecular markers represent an important tool for marker-assisted breeding in major crop plant breeding programmes. Applying molecular genetics to underutilised and minor crop species is more challenging as the funds available to research and develop such crops are often severely limited. Bambara groundnut is an underutilised African legume crop with good drought tolerance. It is also grown at low levels in Southeast Asia. In this review we examine some of the applications of DNA markers and illustrate their value in bambara groundnut

    The potential of the underutilized pulse bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security

    No full text
    Bambara groundnut is an underutilized pulse that can make a positive contribution to food and nutritional security at the regional and global level, particularly in tropical developing countries where the crop is currently grown. Improvement of the crop is constrained by limited understanding of variation in its nutritional composition compared with other pulses. We analysed available nutritional data for bambara groundnut in comparison with four related commodity pulses. This included comparison of concentrations of proximate components and detailed composition of carbohydrate, fibre, seed storage protein and amino acids, fatty acid, phytosterols, minerals, and anti-nutritional factors. The levels of starch (up to 53% of seed), the amylose content of its starch (15.7–35.3% of starch), and dietary fibre content (up to 10.3% of seed), make this crop a desirable food for inclusion into diets for management of diabetes and high cholesterol. There is also potential to develop high protein cultivars, as there exists a large variation for crude protein concentration within the species genepool, reported as 9.6–30.7% of seed. With a more comprehensive base of nutritional information, breeding strategies that have proven successful for crops such as chickpea and soybean can be established for bambara groundnut

    A One-Step Grafting Methodology Can Adjust Stem Morphology and Increase THCA Yield in Medicinal Cannabis

    No full text
    The standard two-step methods for grafting horticultural crops involve cultivating the rootstock for a period of time and then connecting the scion. Medicinal Cannabis differs from most annual horticultural crops because it is usually clonally propagated from cuttings. We developed a grafting methodology specifically for medicinal Cannabis, involving a single step, in which a freshly cut scion is grafted to a freshly cut donor stem that will become the rootstock. This study also aimed to uncover a potential role for roots in influencing cannabinoid content. Two varieties with desirable attributes but cultivation limitations were selected to act as scions. The first, “CBD1” was a high CBDA accumulating variety with low biomass yield, and the second, “THC2”, was a high yielding, high THCA accumulating line with inconsistent root development during cloning. Two candidate rootstocks, “THC9r” and “THC8r”, were identified; both were high THCA, low CBDA varieties. Biomass yields in the THC2 scions grafted to THC9 rootstocks (THC9r_2s) were 20% higher than in the non-grafted THC2 plants. In CBD1 grafted plants, the concentrations of CBDA and some minor cannabinoids were significantly different to non-grafted CBD1, but biomass yields were lower. There was a trend towards a higher concentration of THCA in THC9r_2s plants, and when combined with the increased biomass, yield of THCA was increased from 8 g Plant−1 to 13 g Plant−1. Our results present a new grafting method for medicinal Cannabis that improved yield in THC2 and required no additional cultivation time

    A One-Step Grafting Methodology Can Adjust Stem Morphology and Increase THCA Yield in Medicinal Cannabis

    No full text
    The standard two-step methods for grafting horticultural crops involve cultivating the rootstock for a period of time and then connecting the scion. Medicinal Cannabis differs from most annual horticultural crops because it is usually clonally propagated from cuttings. We developed a grafting methodology specifically for medicinal Cannabis, involving a single step, in which a freshly cut scion is grafted to a freshly cut donor stem that will become the rootstock. This study also aimed to uncover a potential role for roots in influencing cannabinoid content. Two varieties with desirable attributes but cultivation limitations were selected to act as scions. The first, “CBD1” was a high CBDA accumulating variety with low biomass yield, and the second, “THC2”, was a high yielding, high THCA accumulating line with inconsistent root development during cloning. Two candidate rootstocks, “THC9r” and “THC8r”, were identified; both were high THCA, low CBDA varieties. Biomass yields in the THC2 scions grafted to THC9 rootstocks (THC9r_2s) were 20% higher than in the non-grafted THC2 plants. In CBD1 grafted plants, the concentrations of CBDA and some minor cannabinoids were significantly different to non-grafted CBD1, but biomass yields were lower. There was a trend towards a higher concentration of THCA in THC9r_2s plants, and when combined with the increased biomass, yield of THCA was increased from 8 g Plant−1 to 13 g Plant−1. Our results present a new grafting method for medicinal Cannabis that improved yield in THC2 and required no additional cultivation time
    corecore