2 research outputs found

    Quantifying forest land-use changes using remote-sensing and CA-ANN model of Madhupur Sal Forests, Bangladesh

    No full text
    The conversion of forest cover due to anthropogenic activities is of great concern in the Madhupur Sal Forest in Bangladesh. This study explored the land use changes in the Sal Forest area from 1991 to 2020, with the prediction of 2030 and 2040. This study examined and analyzed the changes in five land use classes viz., waterbodies, settlement, Sal Forest, other vegetation, and bare land, and predict those classes using Cellular Automated Artificial Neural Network (CA-ANN) model. The Sankey diagram was employed to represent the change percentage of Land Use and Land Cover (LULC). The LULC for 1991, 2000, 2010, and 2020 derived from Landsat TM and Landsat OLI images, were used to predict the periods of 2030 and 2040. During the last 30 years, the Sal Forest area decreased by 23.35%, whereas the settlement and bare land area increased by 107.19% and 160.89%. The greatest loss of the Sal Forest was observed from 1991 to 2000 by 46.20%. At the same period of time the settlements were increased by 92.68% indicating the encroachment of settlement in the Sal Forest area. The Sankey diagram revealed a major conversion was found between other vegetation and the Sal Forest area. There was a vis-à-vis between other vegetation and the Sal Forest area from 1991 to 2000 and from 2000 to 2010. Interestingly, there was no conversation of the Sal Forest area to other land use from 2010 to 2020, and the prediction showed that the Sal Forest area will be increased by 52.02% in 2040. The preservation and increment of the Sal Forest area suggested strong governmental policy implementation to preserve the forest

    Exploring spatial and temporal patterns of visceral leishmaniasis in endemic areas of Bangladesh

    Get PDF
    Background: Visceral leishmaniasis is a considerable public health burden on the Indian subcontinent. The disease is highly endemic in the north-central part of Bangladesh, affecting the poorest and most marginalized communities. Despite the fact that visceral leishmaniasis (VL) results in mortality, severe morbidity, and socioeconomic stress in the region, the spatiotemporal dynamics of the disease have largely remained unexplored, especially in Bangladesh. Methods: Monthly VL cases between 2010 and 2014, obtained from subdistrict hospitals, were studied in this work. Both global and local spatial autocorrelation techniques were used to identify spatial heterogeneity of the disease. In addition, a spatial scan test was used to identify statistically significant space-time clusters in endemic locations of Bangladesh. Results: Global and local spatial autocorrelation indicated that the distribution of VL was spatially autocorrelated, exhibiting both contiguous and relocation-type of diffusion; however, the former was the main type of VL spread in the study area. The spatial scan test revealed that the disease had ten times higher incidence rate within the clusters than in non-cluster zones. Both tests identified clusters in the same geographic areas, despite the differences in their algorithm and cluster detection approach. Conclusion: The cluster maps, generated in this work, can be used by public health officials to prioritize areas for intervention. Additionally, initiatives to control VL can be handled more efficiently when areas of high risk of the disease are known. Because global environmental change is expected to shift the current distribution of vectors to new locations, the results of this work can help to identify potenti ally exposed populations so that adaptation strategies can be formulated
    corecore