14 research outputs found

    Case report: A successfully treated case of community-acquired urinary tract infection due to Klebsiella aerogenes in Bangladesh

    Get PDF
    Klebsiella aerogenes, a nosocomial pathogen, is increasingly associated with extensive drug resistance and virulence profiles. It is responsible for high morbidity and mortality. This report describes the first successfully treated case of community-acquired urinary tract infection (UTI) caused by Klebsiella aerogenes in an elderly housewife with Type-2 diabetes (T2D) from Dhaka, Bangladesh. The patient was empirically treated with intravenous ceftriaxone (500 mg/8 h). However, she did not respond to the treatment. The urine culture and sensitivity tests, coupled with bacterial whole-genome sequencing (WGS) and analysis, revealed the bacteria to be K. aerogenes which was extensively drug-resistant but was susceptible to carbapenems and polymyxins. Based on these findings, meropenem (500 mg/8 h) was administered to the patient, who then responded to the treatment and recovered successfully without having a relapse. This case raises awareness of the importance of diagnosis of not-so-common etiological agents, correct identification of the pathogens, and targeted antibiotic therapy. In conclusion, correctly identifying etiological agents of UTI using WGS approaches that are otherwise difficult to diagnose could help improve the identification of infectious agents and improve the management of infectious diseases

    Non-lactose fermenting Escherichia coli: Following in the footsteps of lactose fermenting E. coli high-risk clones.

    Get PDF
    Multi-resistant pathogenic strains of non-lactose fermenting Escherichia coli (NLF E. coli) are responsible for various intestinal and extraintestinal infections. Although several studies have characterised such strains using conventional methods, they have not been comprehensively studied at the genomic level. To address this gap, we used whole-genome sequencing (WGS) coupled with detailed microbiological and biochemical testing to investigate 17 NLF E. coli from a diagnostic centre (icddr,b) in Dhaka, Bangladesh. The prevalence of NLF E. coli was 10%, of which 47% (8/17) exhibited multi-drug resistant (MDR) phenotypes. All isolates (17/17) were confirmed as E. coli and could not ferment lactose sugar. WGS data analysis revealed international high-risk clonal lineages. The most prevalent sequence types (STs) were ST131 (23%), ST1193 (18%), ST12 (18%), ST501 (12%), ST167 (6%), ST73 (6%) and ST12 (6%). Phylogenetic analysis corroborated a striking clonal population amongst the studied NLF E. coli isolates. The predominant phylogroup detected was B2 (65%). The bla CTX-M-15 extended-spectrum beta-lactamase gene was present in 53% of isolates (9/17), whilst 64.7% (11/17) isolates were affiliated with pathogenic pathotypes. All extraintestinal pathogenic E. coli pathotypes demonstrated β-hemolysis. Our study underscores the presence of critical pathogens and MDR clones amongst non-lactose fermenting E. coli. We suggest that non-lactose fermenting E. coli be considered equally capable as lactose fermenting forms in causing intestinal and extraintestinal infections. Further, there is a need to undertake systematic, unbiased monitoring of predominant lineages amongst non-lactose fermenting E. coli that would help in better treatment and prevention strategies

    Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of Pneumococcal Pneumonia in Young Children in the PERCH Study.

    Get PDF
    BACKGROUND.: Detection of pneumococcus by lytA polymerase chain reaction (PCR) in blood had poor diagnostic accuracy for diagnosing pneumococcal pneumonia in children in 9 African and Asian sites. We assessed the value of blood lytA quantification in diagnosing pneumococcal pneumonia. METHODS.: The Pneumonia Etiology Research for Child Health (PERCH) case-control study tested whole blood by PCR for pneumococcus in children aged 1-59 months hospitalized with signs of pneumonia and in age-frequency matched community controls. The distribution of load among PCR-positive participants was compared between microbiologically confirmed pneumococcal pneumonia (MCPP) cases, cases confirmed for nonpneumococcal pathogens, nonconfirmed cases, and controls. Receiver operating characteristic analyses determined the "optimal threshold" that distinguished MCPP cases from controls. RESULTS.: Load was available for 290 of 291 cases with pneumococcal PCR detected in blood and 273 of 273 controls. Load was higher in MCPP cases than controls (median, 4.0 × 103 vs 0.19 × 103 copies/mL), but overlapped substantially (range, 0.16-989.9 × 103 copies/mL and 0.01-551.9 × 103 copies/mL, respectively). The proportion with high load (≥2.2 log10 copies/mL) was 62.5% among MCPP cases, 4.3% among nonconfirmed cases, 9.3% among cases confirmed for a nonpneumococcal pathogen, and 3.1% among controls. Pneumococcal load in blood was not associated with respiratory tract illness in controls (P = .32). High blood pneumococcal load was associated with alveolar consolidation on chest radiograph in nonconfirmed cases, and with high (>6.9 log10 copies/mL) nasopharyngeal/oropharyngeal load and C-reactive protein ≥40 mg/L (both P < .01) in nonconfirmed cases but not controls. CONCLUSIONS.: Quantitative pneumococcal PCR in blood has limited diagnostic utility for identifying pneumococcal pneumonia in individual children, but may be informative in epidemiological studies

    The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia.

    Get PDF
    BACKGROUND.: Antibiotic exposure and specimen volume are known to affect pathogen detection by culture. Here we assess their effects on bacterial pathogen detection by both culture and polymerase chain reaction (PCR) in children. METHODS.: PERCH (Pneumonia Etiology Research for Child Health) is a case-control study of pneumonia in children aged 1-59 months investigating pathogens in blood, nasopharyngeal/oropharyngeal (NP/OP) swabs, and induced sputum by culture and PCR. Antibiotic exposure was ascertained by serum bioassay, and for cases, by a record of antibiotic treatment prior to specimen collection. Inoculated blood culture bottles were weighed to estimate volume. RESULTS.: Antibiotic exposure ranged by specimen type from 43.5% to 81.7% in 4223 cases and was detected in 2.3% of 4863 controls. Antibiotics were associated with a 45% reduction in blood culture yield and approximately 20% reduction in yield from induced sputum culture. Reduction in yield of Streptococcus pneumoniae from NP culture was approximately 30% in cases and approximately 32% in controls. Several bacteria had significant but marginal reductions (by 5%-7%) in detection by PCR in NP/OP swabs from both cases and controls, with the exception of S. pneumoniae in exposed controls, which was detected 25% less frequently compared to nonexposed controls. Bacterial detection in induced sputum by PCR decreased 7% for exposed compared to nonexposed cases. For every additional 1 mL of blood culture specimen collected, microbial yield increased 0.51% (95% confidence interval, 0.47%-0.54%), from 2% when volume was ≤1 mL to approximately 6% for ≥3 mL. CONCLUSIONS.: Antibiotic exposure and blood culture volume affect detection of bacterial pathogens in children with pneumonia and should be accounted for in studies of etiology and in clinical management

    Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal Pneumonia in Young Children From Low- and Middle-Income Countries.

    Get PDF
    BACKGROUND.: We investigated the performance of polymerase chain reaction (PCR) on blood in the diagnosis of pneumococcal pneumonia among children from 7 low- and middle-income countries. METHODS.: We tested blood by PCR for the pneumococcal autolysin gene in children aged 1-59 months in the Pneumonia Etiology Research for Child Health (PERCH) study. Children had World Health Organization-defined severe or very severe pneumonia or were age-frequency-matched community controls. Additionally, we tested blood from general pediatric admissions in Kilifi, Kenya, a PERCH site. The proportion PCR-positive was compared among cases with microbiologically confirmed pneumococcal pneumonia (MCPP), cases without a confirmed bacterial infection (nonconfirmed), cases confirmed for nonpneumococcal bacteria, and controls. RESULTS.: In PERCH, 7.3% (n = 291/3995) of cases and 5.5% (n = 273/4987) of controls were blood pneumococcal PCR-positive (P < .001), compared with 64.3% (n = 36/56) of MCPP cases and 6.3% (n = 243/3832) of nonconfirmed cases (P < .001). Blood pneumococcal PCR positivity was higher in children from the 5 African countries (5.5%-11.5% among cases and 5.3%-10.2% among controls) than from the 2 Asian countries (1.3% and 1.0% among cases and 0.8% and 0.8% among controls). Among Kilifi general pediatric admissions, 3.9% (n = 274/6968) were PCR-positive, including 61.7% (n = 37/60) of those with positive blood cultures for pneumococcus. DISCUSSION.: The utility of pneumococcal PCR on blood for diagnosing childhood pneumococcal pneumonia in the 7 low- and middle-income countries studied is limited by poor specificity and by poor sensitivity among MCPP cases

    High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh

    No full text
    The emergence of multidrug-resistant (MDR) Escherichia coli (E. coli) clonal lineages with high virulence potential is alarming. Lack of sufficient data on molecular epidemiology of such pathogens from countries with high infection burden, such as Bangladesh, hinders management and infection control measures. In this study, we assessed the population structure, virulence potential and antimicrobial susceptibility of clinical E. coli isolates from Dhaka, Bangladesh. A high prevalence of MDR (69%) and extended-spectrum &beta;-lactamase production (ESBL) (51%) was found. Most E. coli isolates were susceptible to amikacin (95%), meropenem (94%) and nitrofurantoin (89%) antibiotics. A high prevalence of ST131 (22%) and ST95 (9%) followed by ST69 (4%) and ST73 (3%) was observed. Phylogroups B2 (46%), B1 (16%), D (10%) and F (9%) were prominent. blaCTX-M-15 (52%) and blaNDM-1 (5%) were the most prevalent ESBL and carbapenem resistance genes, respectively. Moreover, the predominant pathotype identified was extraintestinal pathogenic E. coli (ExPEC) (41%) followed by enteric pathogens (11%). In conclusion, our results suggest the transmission of clonal E. coli groups amidst diverse E. coli population that are associated with high virulence potential and MDR phenotype. This is of high concern and mandates more efforts towards molecular surveillance of antimicrobial resistance (AMR) in clinically significant pathogens

    Genome dynamics of Vibrio cholerae isolates linked to seasonal outbreaks of cholera in Dhaka, Bangladesh

    No full text
    The temporal switching of serotypes from serotype Ogawa to Inaba and back to Ogawa was identified in O1, which was responsible for seasonal outbreaks of cholera in Dhaka during the period 2015 to 2018. In order to delineate the factors responsible for this serotype transition, we performed whole-genome sequencing (WGS) of O1 multidrug-resistant strains belonging to both the serotypes that were isolated during this interval where the emergence and subsequent reduction of the Inaba serotype occurred. The whole-genome-based phylogenetic analysis revealed clonal expansion of the Inaba isolates mainly responsible for the peaks of infection during 2016 to 2017 and that they might have evolved from the prevailing Ogawa strains in 2015 which coclustered with them. Furthermore, the gene in these Inaba serotype isolates was inactivated due to insertion of a transposable element at the same position signifying the clonal expansion. Also, isolates in the Inaba serotype dominant clade mainly contained classical allele and revealed differences in the genetic composition of eventh andemic sland II (VSP-II) and the SXT integrative and conjugative element (SXT-ICE) compared to those of Ogawa serotype strains which remerged in 2018. The variable presence of phage-inducible chromosomal island-like element 1 (PLE1) was also noted in the isolates of the Inaba serotype dominant clade. The detailed genomic characterization of the sequenced isolates has shed light on the forces which could be responsible for the periodic changes in serotypes of and has also highlighted the need to analyze the mobilome in greater detail to obtain insights into the mechanisms behind serotype switching. The switching of serotype from Ogawa to Inaba and back to Ogawa has been observed temporally in O1, which is responsible for endemic cholera in Bangladesh. The serospecificity is key for effective intervention and for preventing cholera, a deadly disease that continues to cause significant morbidity and mortality worldwide. In the present study, WGS of allowed us to better understand the factors associated with the serotype switching events observed during 2015 to 2018. Genomic data analysis of strains isolated during this interval highlighted variations in the genes , , and and also identified significant differences in the genetic content of the mobilome, which included key elements such as SXT ICE, VSP-II, and PLE. Our results indicate that selective forces such as antibiotic resistance and phage resistance might contribute to the clonal expansion and predominance of a particular serotype responsible for an outbreak

    Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh.

    Get PDF
    In 2022, one of its worst cholera outbreaks began in Bangladesh and the icddr,b Dhaka hospital treated more than 1300 patients and ca. 42,000 diarrheal cases from March-1 to April-10, 20221. Here, we present genomic attributes of V. cholerae O1 responsible for the 2022 Dhaka outbreak and 960 7th pandemic El Tor (7PET) strains from 88 countries. Results show strains isolated during the Dhaka outbreak cluster with 7PET wave-3 global clade strains, but comprise subclade BD-1.2, for which the most recent common ancestor appears to be that responsible for recent endemic cholera in India. BD-1.2 strains are present in Bangladesh since 2016, but not establishing dominance over BD-2 lineage strains2 until 2018 and predominantly associated with endemic cholera. In conclusion, the recent shift in lineage and genetic attributes, including serotype switching of BD-1.2 from Ogawa to Inaba, may explain the increasing number of cholera cases in Bangladesh

    A Case Series Describing the Recurrence of COVID-19 in Patients Who Recovered from Initial Illness in Bangladesh

    No full text
    To date, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 80 million people globally. We report a case series of five clinically and laboratory confirmed COVID-19 patients from Bangladesh who suffered a second episode of COVID-19 illness after 70 symptom-free days. The International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), is a leading public health research institution in South Asia. icddr, b staff were actively tested, treated and followed-up for COVID-19 by an experienced team of clinicians, epidemiologists, and virologists. From 21 March to 30 September 2020, 1370 icddr,b employees working at either the Dhaka (urban) or Matlab (rural) clinical sites were tested for COVID-19. In total, 522 (38%) were positive; 38% from urban Dhaka (483/1261) and 36% from the rural clinical site Matlab (39/109). Five patients (60% male with a mean age of 41 years) had real-time reverse transcription-polymerase chain reaction (rRT-PCR) diagnosed recurrence (reinfection) of SARS-CoV-2. All had mild symptoms except for one who was hospitalized. Though all cases reported fair risk perceptions towards COVID-19, all had potential exposure sources for reinfection. After a second course of treatment and home isolation, all patients fully recovered. Our findings suggest the need for COVID-19 vaccination and continuing other preventive measures to further mitigate the pandemic. An optimal post-recovery follow-up strategy to allow the safe return of COVID-19 patients to the workforce may be considered
    corecore