5 research outputs found

    Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy

    Get PDF
    Purpose To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). Methods A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. Results Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. Conclusions High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment

    FELLOW EYE CHANGES IN PATIENTS WITH NONISCHEMIC CENTRAL RETINAL VEIN OCCLUSION: Assessment of Perfused Foveal Microvascular Density and Identification of Nonperfused Capillaries.

    Get PDF
    International audienceEyes fellow to nonischemic central retinal vein occlusion (CRVO) were examined for abnormalities, which might explain their increased risk for future occlusion, using adaptive optics scanning light ophthalmoscope fluorescein angiography.Adaptive optics scanning light ophthalmoscope fluorescein angiography foveal microvascular densities were calculated. Nonperfused capillaries adjacent to the foveal avascular zone were identified. Spectral domain optical coherence tomography, ultrawide field fluorescein angiographies, and microperimetry were also performed.Ten fellow eyes of nine nonischemic CRVO and 1 nonischemic hemi-CRVO subjects and four affected eyes of three nonischemic CRVO and one nonischemic hemi-CRVO subjects were imaged. Ninety percent of fellow eyes and 100% of affected eyes demonstrated at least 1 nonperfused capillary compared with 31% of healthy eyes. Fellow eye microvascular density (35 ± 3.6 mm(-1)) was significantly higher than that of affected eyes (25 ± 5.2 mm(-1)) and significantly lower than that of healthy eyes (42 ± 4.2 mm(-1)). Compared with healthy controls, spectral domain optical coherence tomography thicknesses showed no significant difference, whereas microperimetry and 2/9 ultrawide field fluorescein angiography revealed abnormalities in fellow eyes.Fellow eye changes detectable on adaptive optics scanning light ophthalmoscope fluorescein angiography reflect subclinical pathology difficult to detect using conventional imaging technologies. These changes may help elucidate the pathogenesis of nonischemic CRVO and help identify eyes at increased risk of future occlusion

    Correlating Photoreceptor Mosaic Structure to Clinical Findings in Stargardt Disease

    No full text
    Purpose: To demonstrate a method for correlating photoreceptor mosaic structure with optical coherence tomography (OCT) and microperimetry findings in patients with Stargardt disease. Methods: A total of 14 patients with clinically diagnosed Stargardt disease were imaged using confocal and split-detection adaptive optics scanning light ophthalmoscopy. Cone photoreceptors were identified manually in a band along the temporal meridian. Resulting values were compared to a normative database (n ¼ 9) to generate cone density deviation (CDD) maps. Manual measurement of outer nuclear layer plus Henle fiber layer (ONLþHFL) thickness was performed, in addition to determination of the presence of ellipsoid zone (EZ) and interdigitation zone (IZ) bands on OCT. These results, along with microperimetry data, were overlaid with the CDD maps. Results: Wide variation in foveal structure and CDD maps was seen within this small group. Disruption of ONLþHFL and/or IZ band was seen in all patients, with EZ band preservation in regions with low cone density in 38% of locations analyzed. Normality of retinal lamellar structure on OCT corresponded with cone density and visual function at 50/78 locations analyzed. Outer retinal tubulations containing photoreceptor-like structures were observed in 3 patients. Conclusions: The use of CDD color-coded maps enables direct comparison of cone mosaic local density with other measures of retinal structure and function. Larger normative datasets and improved tools for automation of image alignment are needed. Translational Relevance: The approach described facilitates comparison of complex multimodal data sets from patients with inherited retinal degeneration, and can be expanded to incorporate other structural imaging or functional testing

    Residual Foveal Cone Structure in CNGB3

    No full text
    PURPOSE: Congenital achromatopsia (ACHM) is an autosomal recessive disorder in which cone function is absent or severely reduced. Gene therapy in animal models of ACHM have shown restoration of cone function, though translation of these results to humans relies, in part, on the presence of viable cone photoreceptors at the time of treatment. Here, we characterized residual cone structure in subjects with CNGB3-associated ACHM. METHODS: High-resolution imaging (optical coherence tomography [OCT] and adaptive optics scanning light ophthalmoscopy [AOSLO]) was performed in 51 subjects with CNGB3-associated ACHM. Peak cone density and inter-cone spacing at the fovea was measured using split-detection AOSLO. Foveal outer nuclear layer thickness was measured in OCT images, and the integrity of the photoreceptor layer was assessed using a previously published OCT grading scheme. RESULTS: Analyzable images of the foveal cones were obtained in 26 of 51 subjects, with nystagmus representing the major obstacle to obtaining high-quality images. Peak foveal cone density ranged from 7,273 to 53,554 cones/mm(2), significantly lower than normal (range, 84,733–234,391 cones/mm(2)), with the remnant cones being either contiguously or sparsely arranged. Peak cone density was correlated with OCT integrity grade; however, there was overlap of the density ranges between OCT grades. CONCLUSIONS: The degree of residual foveal cone structure varies greatly among subjects with CNGB3-associated ACHM. Such measurements may be useful in estimating the therapeutic potential of a given retina, providing affected individuals and physicians with valuable information to more accurately assess the risk-benefit ratio as they consider enrolling in experimental gene therapy trials. (www.clinicaltrials.gov, NCT01846052.

    REPEATABILITY AND LONGITUDINAL ASSESSMENT OF FOVEAL CONE STRUCTURE IN CNGB3-ASSOCIATED ACHROMATOPSIA

    No full text
    High-resolution in vivo imaging has provided evidence of residual cone structure in congenital achromatopsia, although the progressive nature of the disease remains unclear. In this study, the authors use optical coherence tomography and adaptive optics scanning light ophthalmoscopy to investigate longitudinal changes in cone structure in achromatopsia
    corecore