3 research outputs found
Systematic effects of carbon doping on the superconducting properties of Mg(BC)
The upper critical field, , of Mg(BC) has been
measured in order to probe the maximum magnetic field range for
superconductivity that can be attained by C doping. Carbon doped boron
filaments are prepared by CVD techniques, and then these fibers are then
exposed to Mg vapor to form the superconducting compound. The transition
temperatures are depressed about C and rises at about C. This means that 3.5% C will depress from to and
raise from to . Higher fields are probably
attainable in the region of 5% C to 7% C. These rises in are
accompanied by a rise in resistivity at from about
to about . Given that the samples are polycrystalline wire
segments, the experimentally determined curves represent the upper
manifold associated with
Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments
We have studied the evolution of superconducting and normal state properties
of neutron irradiated Mg(BC) wire segments as a function
of post exposure annealing time and temperature. The initial fluence fully
suppressed superconductivity and resulted in an anisotropic expansion of the
unit cell. Superconductivity was restored by post-exposure annealing. The upper
critical field, H(T=0), approximately scales with T starting with an
undamaged T near 37 K and H(T=0) near 32 T. Up to an annealing
temperature of 400 C the recovery of T tends to coincide with a
decrease in the normal state resistivity and a systematic recovery of the
lattice parameters. Above 400 C a decrease in order along the c- direction
coincides with an increase in resistivity, but no apparent change in the
evolution of T and H. To first order, it appears that carbon doping
and neutron damaging effect the superconducting properties of MgB
independently
Effects of neutron irradiation on carbon doped MgB2 wire segments
We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B0.962C0.038)2 wire segments as a function of post-exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2(T = 0), approximately scales with Tc, starting with an undamaged Tc near 37 K and Hc2(T = 0) near 32 T. Up to an annealing temperature of 400 °C the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 °C a decrease in ordering along the c-direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc and Hc2. To a first order approximation, it appears that carbon doping and neutron damage affect the superconducting properties of MgB2 independently.This is the version of the article before peer review or editing, as submitted by an author to Superconductor Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at DOI: 10.1088/0953-2048/19/6/024. Copyright 2006 IOP Publishing Ltd. Posted with permission