4 research outputs found

    Clinical oncologic applications of PET/MRI: a new horizon

    Get PDF
    Abstract: Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI

    Usefulness and pitfalls of planar gamma-scintigraphy for measuring aerosol deposition in the lungs: a Monte Carlo investigation

    No full text
    Planar gamma-scintigraphy is often used to quantify pulmonary deposition patterns from aerosol inhalers. The results are quite different from those obtained using 3-dimensional PET and SPECT. The purpose of this study was to characterize the effects of scatter and tissue attenuation on the distribution of radiolabeled aerosol as measured by planar scintigraphy using Monte Carlo simulations. This study also investigated the applicability of a few correction methods used in inhalation studies. METHODS: Body density maps were derived from CT scans. Regions of interest-lungs, major airways, and esophagus-were defined from the same CT volume. Two radioactivity source distribution patterns in the lung, uniform and nonuniform, were used. A Monte Carlo program, SIMIND, was used to generate anterior and posterior gamma-images of the composed inhalation distributions for 2 energy windows, photopeak (127-153 keV) and scatter (92-125 keV). The effects of scatter and attenuation were estimated on the basis of the imaging components separated from the simulation. A scatter correction method and 2 attenuation correction methods, all applied to inhalation scintigraphy, were evaluated using the simulated images. RESULTS: The amount of scatter ranges from 24% to approximately 29% in the lungs and from 29% to approximately 35% in the central (airway or esophagus) region on the planar images. Significant differences were found among regions and between source distributions (P < 0.05). The fraction k used for dual-energy-based scatter correction also varied and was found to be less than the commonly used k = 0.5. The simplified narrow-beam attenuation correction and the effective (broad-beam) correction methods were found to either under- or overcorrect the regional activities. CONCLUSION: The amount of scatter and tissue attenuation in the thorax region depends on source distribution and body attenuation. In applying planar scintigraphy for aerosol inhalation studies, it is difficult to obtain precise quantitative measurements because of the uncertainties associated with scatter and attenuation corrections. Accurate corrections require knowledge of both source and density distributions
    corecore