5,946 research outputs found

    A Frequentist Approach to Computer Model Calibration

    Full text link
    This paper considers the computer model calibration problem and provides a general frequentist solution. Under the proposed framework, the data model is semi-parametric with a nonparametric discrepancy function which accounts for any discrepancy between the physical reality and the computer model. In an attempt to solve a fundamentally important (but often ignored) identifiability issue between the computer model parameters and the discrepancy function, this paper proposes a new and identifiable parametrization of the calibration problem. It also develops a two-step procedure for estimating all the relevant quantities under the new parameterization. This estimation procedure is shown to enjoy excellent rates of convergence and can be straightforwardly implemented with existing software. For uncertainty quantification, bootstrapping is adopted to construct confidence regions for the quantities of interest. The practical performance of the proposed methodology is illustrated through simulation examples and an application to a computational fluid dynamics model.Comment: 21 pages, 2 figure

    Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices

    Get PDF
    Medical devices are an integral part of therapeutic management; despite their importance, they carry a significant risk of microbial infection. Bacterial attachment to a medical device is established by a single, multiplying organism, leading to subsequent biofilm formation. To date, no preventative measures have impacted the incidence of device-related infection. We report the bidirectional covalent coupling of an engineered cationic antimicrobial peptide (eCAP), WLBU2, to various biological surfaces is accomplished. These surfaces included (i) a carbohydrate-based gel matrix, (ii) a complex polymeric plastic bead, and (iii) a silica-calcium phosphate nanocomposite associated with bone reconstruction. WLBU2-conjugated surfaces are shown to retain potent antimicrobial activity related to bacterial surface adhesion. This study provides proof of principle that covalently coating laboratory and bone-regenerating materials with eCAPs has the potential for decreasing infection rates of implanted devices. These findings have important consequences to the patient management component of our current health care technology

    Potentials of Cellular Reprogramming as a Novel Strategy for Neuroregeneration

    Get PDF
    Cellular reprogramming technology holds great potential for tissue repair and regeneration to replace cells that are lost due to diseases or injuries. In addition to the landmark discovery of induced pluripotent stem cells, advances in cellular reprogramming allow the direct lineage conversion of one somatic cell type to another using defined transcription factors. This direct reprogramming technology represents a rapid way to generate target cells in the laboratory, which can be used for transplantation and studies of biology and diseases. More importantly, recent work has demonstrated the exciting application of direct reprogramming to stimulate regeneration in vivo, providing an alternative approach to transplantation of donor cells. Here, we provide an overview of the underlying concept of using cellular reprogramming to convert cell fates and discuss the current advances in cellular reprogramming both in vitro and in vivo, with particular focuses on the neural and retinal systems. We also discuss the potential of in vivo reprogramming in regenerative medicine, the challenges and potential solutions to translate this technology to the clinic

    Spin models on random graphs with controlled topologies beyond degree constraints

    Full text link
    We study Ising spin models on finitely connected random interaction graphs which are drawn from an ensemble in which not only the degree distribution p(k)p(k) can be chosen arbitrarily, but which allows for further fine-tuning of the topology via preferential attachment of edges on the basis of an arbitrary function Q(k,k') of the degrees of the vertices involved. We solve these models using finite connectivity equilibrium replica theory, within the replica symmetric ansatz. In our ensemble of graphs, phase diagrams of the spin system are found to depend no longer only on the chosen degree distribution, but also on the choice made for Q(k,k'). The increased ability to control interaction topology in solvable models beyond prescribing only the degree distribution of the interaction graph enables a more accurate modeling of real-world interacting particle systems by spin systems on suitably defined random graphs.Comment: 21 pages, 4 figures, submitted to J Phys

    Generation of entangled states and error protection from adiabatic avoided level crossings

    Get PDF
    We consider the environment-affected dynamics of NN self-interacting particles living in one-dimensional double wells. Two topics are dealt with. First, we consider the production of entangled states of two-level systems. We show that by adiabatically varying the well biases we may dynamically generate maximally entangled states, starting from initially unentangled product states. Entanglement degradation due to a common type of environmental influence is then computed by solving a master equation. However, we also demonstrate that entanglement production is unaffected if the system-environment coupling is of the type that induces ``motional narrowing''. As our second but related topic, we construct a different master equation that seamlessly merges error protection/detection dynamics for quantum information with the environmental couplings responsible for producing the errors in the first place. Adiabatic avoided crossing schemes are used in both topics.Comment: 14 pages, 6 figures. Minor changes. To appear in Phys. Rev.

    Negative Priming Under Rapid Serial Visual Presentation

    Get PDF
    Negative priming (NP) was examined under a new paradigm wherein a target and distractors were temporally separated using rapid serial visual presentation (RSVP). The results from the two experiments revealed that (a) NP was robust under RSVP, such that the responses to a target were slower when the target served as a distractor in a previous trial than when it did not; (b) NP was found regardless of whether the distractors appeared before or after the targets; and (c) NP was stronger when the distractor was more distinctive. These findings are generally similar to those on NP in the spatial search task. The implications for the processes causing NP under RSVP are discussed in the current paper

    Further studies on relic neutrino asymmetry generation I: the adiabatic Boltzmann limit, non-adiabatic evolution, and the classical harmonic oscillator analogue of the quantum kinetic equations

    Get PDF
    We demonstrate that the relic neutrino asymmetry evolution equation derived from the quantum kinetic equations (QKEs) reduces to the Boltzmann limit that is dependent only on the instantaneous neutrino number densities, in the adiabatic limit in conjunction with sufficient damping. An original physical and/or geometrical interpretation of the adiabatic approximation is given, which serves as a convenient visual aid to understanding the sharply contrasting resonance behaviours exhibited by the neutrino ensemble in opposing collision regimes. We also present a classical analogue for the evolution of the difference in να\nu_{\alpha} and νs\nu_s number densities which, in the Boltzmann limit, is akin to the behaviour of the generic reaction A⇌BA \rightleftharpoons B with equal forward and reverse reaction rate constants. A new characteristic quantity, the matter and collision-affected mixing angle of the neutrino ensemble, is identified here for the first time. The role of collisions is revealed to be twofold: (i) to wipe out the inherent oscillations, and (ii) to equilibrate the να\nu_{\alpha} and νs\nu_s number densities in the long run. Studies on non-adiabatic evolution and its possible relation to rapid oscillations in lepton number generation also feature, with the introduction of an adiabaticity parameter for collision-affected oscillations.Comment: RevTeX, 38 pages including 8 embedded figure

    Energy-dependent solar neutrino flux depletion in the Exact Parity Model and implications for SNO, SuperKamiokande and BOREXINO

    Get PDF
    Energy-dependent solar neutrino flux reduction caused by the Mikheyev-Smirnov-Wolfenstein (MSW) effect is applied to the Exact Parity Model. Several scenarios are possible, depending on the region of parameter space chosen. The interplay between intergenerational MSW transitions and vacuum ``intragenerational'' ordinary-mirror neutrino oscillations is discussed. Expectations for the ratio of charged to neutral current event rates at the Sudbury Neutrino Observatory (SNO) are estimated. The implications of the various scenarios for the Boron neutrino energy spectrum and BOREXINO are briefly discussed. The consequences of MSW-induced solar neutrino depletion within the Exact Parity Model differ in interesting ways from the standard νe−νμ,τ\nu_e - \nu_{\mu, \tau} and νe−νs\nu_e - \nu_s cases. The physical causes of these differences are determined.Comment: 43 pages, 8 figures, RevTeX; to appear in Phys. Rev. D, accepted versio
    • …
    corecore