908 research outputs found
Aircraft control via variable cant-angle winglets
Copyright @ 2008 American Institute of Aeronautics and AstronauticsThis paper investigates a novel method for the control of "morphing" aircraft. The concept consists of a pair of winglets; with adjustable cant angle, independently actuated and mounted at the tips of a baseline flying wing. The general philosophy behind the concept was that for specific flight conditions such as a coordinated turn, the use of two control devices would be sufficient for adequate control. Computations with a vortex lattice model and subsequent wind-tunnel tests demonstrate the viability of the concept, with individual and/or dual winglet deflection producing multi-axis coupled control moments. Comparisons between the experimental and computational results showed reasonable to good agreement, with the major discrepancies thought to be due to wind-tunnel model aeroelastic effects.This work has been supported by a Marie Curie excellence research grant funded by the European Commission
Modematching an optical quantum memory
We analyse the off-resonant Raman interaction of a single broadband photon,
copropagating with a classical `control' pulse, with an atomic ensemble. It is
shown that the classical electrodynamical structure of the interaction
guarantees canonical evolution of the quantum mechanical field operators. This
allows the interaction to be decomposed as a beamsplitter transformation
between optical and material excitations on a mode-by-mode basis. A single,
dominant modefunction describes the dynamics for arbitrary control pulse
shapes.
Complete transfer of the quantum state of the incident photon to a collective
dark state within the ensemble can be achieved by shaping the control pulse so
as to match the dominant mode to the temporal mode of the photon. Readout of
the material excitation, back to the optical field, is considered in the
context of the symmetry connecting the input and output modes. Finally, we show
that the transverse spatial structure of the interaction is characterised by
the same mode decomposition.Comment: 17 pages, 4 figures. Brief section added treating the transverse
spatial structure of the memory interaction. Some references added. A few
typos fixe
Self-consistent characterization of light statistics
We demonstrate the possibility of a self-consistent characterization of the
photon-number statistics of a light field by using photoemissive detectors with
internal gain simply endowed with linear input/output responses. The method can
be applied to both microscopic and mesoscopic photon-number regimes. The
detectors must operate in the linear range without need of photon-counting
capabilities.Comment: To be published in "Journal of Modern Optics
Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate
Recent experimental measurements of atomic intensity correlations through
atom shot noise suggest that atomic quadrature phase correlations may soon be
measured with a similar precision. We propose a test of local realism with
mesoscopic numbers of massive particles based on such measurements. Using
dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic
atoms, we demonstrate that strongly entangled atomic beams may be produced
which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures,
in direct analogy to the position and momentum correlations originally
considered by EPR.Comment: Final published version (corrections in Ref. [32], updated
references
Reconstruction of photon statistics using low performance photon counters
The output of a photodetector consists of a current pulse whose charge has
the statistical distribution of the actual photon numbers convolved with a
Bernoulli distribution. Photodetectors are characterized by a nonunit quantum
efficiency, i.e. not all the photons lead to a charge, and by a finite
resolution, i.e. a different number of detected photons leads to a
discriminable values of the charge only up to a maximum value. We present a
detailed comparison, based on Monte Carlo simulated experiments and real data,
among the performances of detectors with different upper limits of counting
capability. In our scheme the inversion of Bernoulli convolution is performed
by maximum-likelihood methods assisted by measurements taken at different
quantum efficiencies. We show that detectors that are only able to discriminate
between zero, one and more than one detected photons are generally enough to
provide a reliable reconstruction of the photon statistics for single-peaked
distributions, while detectors with higher resolution limits do not lead to
further improvements. In addition, we demonstrate that, for semiclassical
states, even on/off detectors are enough to provide a good reconstruction.
Finally, we show that a reliable reconstruction of multi-peaked distributions
requires either higher quantum efficiency or better capability in
discriminating high number of detected photons.Comment: 8 pages, 3 figure
Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion
We study the conditional preparation of single photons based on parametric
downconversion, where the detection of one photon from a given pair heralds the
existence of a single photon in the conjugate mode. We derive conditions on the
modal characteristics of the photon pairs, which ensure that the conditionally
prepared single photons are quantum-mechanically pure. We propose specific
experimental techniques that yield photon pairs ideally suited for
single-photon conditional preparation.Comment: 14 pages, 6 figure
- …