4 research outputs found

    High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss

    Get PDF
    BACKGROUND: Cochlear outer hair cells change their length in response to variations in membrane potential. This capability, called electromotility, is believed to enable the sensitivity and frequency selectivity of the mammalian cochlea. Prestin is a transmembrane protein required for electromotility. Homozygous prestin knockout mice are profoundly hearing impaired. In humans, a single nucleotide change in SLC26A5, encoding prestin, has been reported in association with hearing loss. This DNA sequence variation, IVS2-2A>G, occurs in the exon 3 splice acceptor site and is expected to abolish splicing of exon 3. METHODS: To further explore the relationship between hearing loss and the IVS2-2A>G transition, and assess allele frequency, genomic DNA from hearing impaired and control subjects was analyzed by DNA sequencing. SLC26A5 genomic DNA sequences from human, chimp, rat, mouse, zebrafish and fruit fly were aligned and compared for evolutionary conservation of the exon 3 splice acceptor site. Alternative splice acceptor sites within intron 2 of human SLC26A5 were sought using a splice site prediction program from the Berkeley Drosophila Genome Project. RESULTS: The IVS2-2A>G variant was found in a heterozygous state in 4 of 74 hearing impaired subjects of Hispanic, Caucasian or uncertain ethnicity and 4 of 150 Hispanic or Caucasian controls (p = 0.45). The IVS2-2A>G variant was not found in 106 subjects of Asian or African American descent. No homozygous subjects were identified (n = 330). Sequence alignment of SLC26A5 orthologs demonstrated that the A nucleotide at position IVS2-2 is invariant among several eukaryotic species. Sequence analysis also revealed five potential alternative splice acceptor sites in intron 2 of human SLC26A5. CONCLUSION: These data suggest that the IVS2-2A>G variant may not occur more frequently in hearing impaired subjects than in controls. The identification of five potential alternative splice acceptor sites in intron 2 of human SLC26A5 suggests a potential mechanism by which expression of prestin might be maintained in cells carrying the SLC26A5 IVS2-2A>G DNA sequence variation. Additional studies are needed to evaluate the effect of the IVS2-2A>G transition on splicing of SLC26A5 transcripts and characterize the hearing status of individuals homozygous for the IVS2-2A>G variant

    DNA Sequence Analysis of SLC26A5, Encoding Prestin, in a Patient-Control Cohort: Identification of Fourteen Novel DNA Sequence Variations

    Get PDF
    Prestin, encoded by the gene SLC26A5, is a transmembrane protein of the cochlear outer hair cell (OHC). Prestin is required for the somatic electromotile activity of OHCs, which is absent in OHCs and causes severe hearing impairment in mice lacking prestin. In humans, the role of sequence variations in SLC26A5 in hearing loss is less clear. Although prestin is expected to be required for functional human OHCs, the clinical significance of reported putative mutant alleles in humans is uncertain.To explore the hypothesis that SLC26A5 may act as a modifier gene, affecting the severity of hearing loss caused by an independent etiology, a patient-control cohort was screened for DNA sequence variations in SLC26A5 using sequencing and allele specific methods. Patients in this study carried known pathogenic or controversial sequence variations in GJB2, encoding Connexin 26, or confirmed or suspected sequence variations in SLC26A5; controls included four ethnic populations. Twenty-three different DNA sequence variations in SLC26A5, 14 of which are novel, were observed: 4 novel sequence variations were found exclusively among patients; 7 novel sequence variations were found exclusively among controls; and, 12 sequence variations, 3 of which are novel, were found in both patients and controls. Twenty-one of the 23 DNA sequence variations were located in non-coding regions of SLC26A5. Two coding sequence variations, both novel, were observed only in patients and predict a silent change, p.S434S, and an amino acid substitution, p.I663V. In silico analysis of the p.I663V amino acid variation suggested this variant might be benign. Using Fisher's exact test, no statistically significant difference was observed between patients and controls in the frequency of the identified DNA sequence variations. Haplotype analysis using HaploView 4.0 software revealed the same predominant haplotype in patients and controls and derived haplotype blocks in the patient-control cohort similar to those generated from the International HapMap Project.Although these data fail to support a hypothesis that SLC26A5 acts as a modifier gene of GJB2-related hearing loss, the sample size is small and investigation of a larger population might be more informative. The 14 novel DNA sequence variations in SLC26A5 reported here will serve as useful research tools for future studies of prestin
    corecore