9 research outputs found

    Inertial mechanism: dynamical mass as a source of particle creation

    Full text link
    A kinetic theory of vacuum particle creation under the action of an inertial mechanism is constructed within a nonpertrubative dynamical approach. At the semi-phenomenological level, the inertial mechanism corresponds to quantum field theory with a time-dependent mass. At the microscopic level, such a dependence may be caused by different reasons: The non-stationary Higgs mechanism, the influence of a mean field or condensate, the presence of the conformal multiplier in the scalar-tensor gravitation theory etc. In what follows, a kinetic theory in the collisionless approximation is developed for scalar, spinor and massive vector fields in the framework of the oscillator representation, which is an effective tool for transition to the quasiparticle description and for derivation of non-Markovian kinetic equations. Properties of these equations and relevant observables (particle number and energy densities, pressure) are studied. The developed theory is applied here to describe the vacuum matter creation in conformal cosmological models and discuss the problem of the observed number density of photons in the cosmic microwave background radiation. As other example, the self-consistent evolution of scalar fields with non-monotonic self-interaction potentials (the W-potential and Witten - Di Vecchia - Veneziano model) is considered. In particular, conditions for appearance of tachyonic modes and a problem of the relevant definition of a vacuum state are considered.Comment: 51 pages, 18 figures, submitted to PEPAN (JINR, Dubna); v2: added reference

    Photoreactive CO2 Capture by a Zr-Nanographene MOF

    No full text
    The mechanism of photochemical CO2 reduction to formate by PCN-136, a Zr-based metal-organic framework (MOF) that incorporates light-harvesting nanographene ligands, has been investigated using steady-state and time-resolved spectroscopy and density functional theory (DFT) calculations. The catalysis was found to proceed via a “photoreactive capture” mecha-nism, where Zr-based nodes serve to capture CO2 in the form of Zr-bicarbonates, while the nanographene ligands have a dual role to absorb light and to store one-electron equivalents needed for catalysis. We also find that the process occurs via a “two-for-one” route, where a single photon initiates a cascade of electron/hydrogen atom transfers from the sacrificial donor to the CO2-bound MOF. The mechanistic findings obtained here illustrate several advantages of MOF-based architectures in the molecular photocatalyst engineering and provide insights on ways to achieve high formate selectivity
    corecore