612 research outputs found

    Simulated VLBI Images From Relativistic Hydrodynamic Jet Models

    Get PDF
    A series of simulated maps showing the appearance in total intensity of flows computed using a recently developed relativistic hydrodynamic code (Duncan \& Hughes 1994: ApJ, 436, L119) are presented. The radiation transfer calculations were performed by assuming the flow is permeated by a magnetic field and fast particle distribution in energy equipartition, with energy density proportional to the hydrodynamic energy density (i.e., pressure). We find that relativistic flows subject to strong perturbations exhibit a density structure consisting of a series of nested bow shocks, and that this structure is evident in the intensity maps for large viewing angles. However, for viewing angles <30∘<30^{\circ}, differential Doppler boosting leads to a series of axial knots of emission, similar to the pattern exhibited by many VLBI sources. The appearance of VLBI knots is determined primarily by the Doppler boosting of parts of a more extended flow. To study the evolution of a perturbed jet, a time series of maps was produced and an integrated flux light curve created. The light curve shows features characteristic of a radio loud AGN: small amplitude variations and a large outburst. We find that in the absence of perturbations, jets with a modest Lorentz factor (∼5\sim 5) exhibit complex intensity maps, while faster jets (Lorentz factor ∼10\sim 10) are largely featureless. We also study the appearance of kiloparsec jet-counterjet pairs by producing simulated maps at relatively large viewing angles; we conclude that observed hot spot emission is more likely to be associated with the Mach disk than with the outer, bow shock.Comment: 27 pages, uses aasms4.sty; 18 PostScript figures (1.57Mb gziped, 8.67Mb gunziped) available from http://www.astro.lsa.umich.edu/users/hughes/icon_dir/rad.html or by anonymous ftp from ra.astro.lsa.umich.edu in pub/get/hughes. Submitted to Ap.

    A simple flip of an obstetrics clerkship lecture focusing on interactive learning

    Get PDF
    Abstract Objective: To determine the value of interactive learning after a low-tech flip of a traditional lecture during an obstetrics and gynecology clerkship. Design: All third-year medical students completed a flipped learning experience between May 2014 and April 2016. Central to the change was replacement of a mid-clerkship lecture (&quot;late term and prolonged gestation&quot;) with interactive learning at seven stations by student pairs (one each on separate obstetrics and gynecology services). Before class, students electronically received a handout that described learning objectives, subject background, and interactive stations. The stations featured manipulative models, instruments, data, and images involving prenatal care, fetal growth and testing, and labor and delivery decision-making. Results: The flipped model was easily executed with proper preparation. The 178 consecutive students completed the two mandated surveys. The median score given by students about the same instructor&apos;s effectiveness increased from 4.0 (previous two years) to 4.4 (on a 5-point scale). Compared with traditional lectures by other clerkship faculty, the flipped classroom was judged by students to be easier for understanding and more interactive. Students perceived being more responsible for learning with better recall and application to practice. Conclusions: A low-tech approach to the flipped classroom was easily executed with favorable responses from students about interactive learning

    Perspectives and limitations of gene expression profiling in rheumatology: new molecular strategies

    Get PDF
    The deciphering of the sequence of the human genome has raised the expectation of unravelling the specific role of each gene in physiology and pathology. High-throughput technologies for gene expression profiling provide the first practical basis for applying this information. In rheumatology, with its many diseases of unknown pathogenesis and puzzling inflammatory aspects, these advances appear to promise a significant advance towards the identification of leading mechanisms of pathology. Expression patterns reflect the complexity of the molecular processes and are expected to provide the molecular basis for specific diagnosis, therapeutic stratification, long-term monitoring and prognostic evaluation. Identification of the molecular networks will help in the discovery of appropriate drug targets, and permit focusing on the most effective and least toxic compounds. Current limitations in screening technologies, experimental strategies and bioinformatic interpretation will shortly be overcome by the rapid development in this field. However, gene expression profiling, by its nature, will not provide biochemical information on functional activities of proteins and might only in part reflect underlying genetic dysfunction. Genomic and proteomic technologies will therefore be complementary in their scientific and clinical application

    Supplement 24, Part 6, Parasite-Subject Catalogue, Treatment

    Get PDF
    United States Department of Agriculture, Bureau of Animal Industr

    Supplement 24, Part 1, Authors: A To Z

    Get PDF
    United States Department of Agriculture, Bureau of Animal Industr

    Supplement 22, Part 5, Parasite-Subject Catalogue, Parasites: Arthropoda And Miscellaneous Phyla

    Get PDF
    United States Department of Agriculture, Bureau of Animal Industr
    • …
    corecore