37 research outputs found

    Ionotropic glutamate receptors in GtoPdb v.2023.1

    Get PDF
    The ionotropic glutamate receptors comprise members of the NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) and kainate receptor classes, named originally according to their preferred, synthetic, agonist [36, 94, 157]. Receptor heterogeneity within each class arises from the homo-oligomeric, or hetero-oligomeric, assembly of distinct subunits into cation-selective tetramers. Each subunit of the tetrameric complex comprises an extracellular amino terminal domain (ATD), an extracellular ligand binding domain (LBD), 3 TM domains (M1, M3 and M4), a channel lining re-entrant 'p-loop' (M2) located between M1 and M3 and an intracellular carboxy- terminal domain (CTD) [101, 70, 109, 157, 84]. The X-ray structure of a homomeric ionotropic glutamate receptor (GluA2- see below) has recently been solved at 3.6Å resolution [145] and although providing the most complete structural information current available may not representative of the subunit arrangement of, for example, the heteromeric NMDA receptors [73]. It is beyond the scope of this supplement to discuss the pharmacology of individual ionotropic glutamate receptor isoforms in detail; such information can be gleaned from [36, 68, 32, 79, 43, 116, 25, 67, 157, 114, 115, 165]. Agents that discriminate between subunit isoforms are, where appropriate, noted in the tables and additional compounds that distinguish between receptor isoforms are indicated in the text below.The classification of glutamate receptor subunits has been re-addressed by NC-IUPHAR [29]. The scheme developed recommends a nomenclature for ionotropic glutamate receptor subunits that is adopted here.NMDA receptorsNMDA receptors assemble as obligate heteromers that may be drawn from GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B subunits. Alternative splicing can generate eight isoforms of GluN1 with differing pharmacological properties. Various splice variants of GluN2B, 2C, 2D and GluN3A have also been reported. Activation of NMDA receptors containing GluN1 and GluN2 subunits requires the binding of two agonists, glutamate to the S1 and S2 regions of the GluN2 subunit and glycine to S1 and S2 regions of the GluN1 subunit [42, 26]. The minimal requirement for efficient functional expression of NMDA receptors in vitro is a di-heteromeric assembly of GluN1 and at least one GluN2 subunit variant, as a dimer of heterodimers arrangement in the extracellular domain [49, 101, 73]. However, more complex tri-heteromeric assemblies, incorporating multiple subtypes of GluN2 subunit, or GluN3 subunits, can be generated in vitro and occur in vivo. The NMDA receptor channel commonly has a high relative permeability to Ca2+ and is blocked, in a voltage-dependent manner, by Mg2+ such that at resting potentials the response is substantially inhibited.AMPA and Kainate receptorsAMPA receptors assemble as homomers, or heteromers, that may be drawn from GluA1, GluA2, GluA3 and GluA4 subunits. Transmembrane AMPA receptor regulatory proteins (TARPs) of class I (i.e. γ2, γ3, γ4 and γ8) act, with variable stoichiometry, as auxiliary subunits to AMPA receptors and influence their trafficking, single channel conductance gating and pharmacology (reviewed in [44, 105, 155, 66]). Functional kainate receptors can be expressed as homomers of GluK1, GluK2 or GluK3 subunits. GluK1-3 subunits are also capable of assembling into heterotetramers (e.g. GluK1/K2; [89, 121, 120]). Two additional kainate receptor subunits, GluK4 and GluK5, when expressed individually, form high affinity binding sites for kainate, but lack function, but can form heteromers when expressed with GluK1-3 subunits (e.g. GluK2/K5; reviewed in [121, 67, 120]). Kainate receptors may also exhibit 'metabotropic' functions [89, 133]. As found for AMPA receptors, kainate receptors are modulated by auxiliary subunits (Neto proteins, [120, 90]). An important function difference between AMPA and kainate receptors is that the latter require extracellular Na+ and Cl- for their activation [12, 122]. RNA encoding the GluA2 subunit undergoes extensive RNA editing in which the codon encoding a p-loop glutamine residue (Q) is converted to one encoding arginine (R). This Q/R site strongly influences the biophysical properties of the receptor. Recombinant AMPA receptors lacking RNA edited GluA2 subunits are: (1) permeable to Ca2+; (2) blocked by intracellular polyamines at depolarized potentials causing inward rectification (the latter being reduced by TARPs); (3) blocked by extracellular argiotoxin and joro spider toxins and (4) demonstrate higher channel conductances than receptors containing the edited form of GluA2 [141, 65]. GluK1 and GluK2, but not other kainate receptor subunits, are similarly edited and broadly similar functional characteristics apply to kainate receptors lacking either an RNA edited GluK1, or GluK2, subunit [89, 120]. Native AMPA and kainate receptors displaying differential channel conductances, Ca2+ permeabilites and sensitivity to block by intracellular polyamines have been identified [31, 65, 93]. GluA1-4 can exist as two variants generated by alternative splicing (termed ‘flip’ and ‘flop’) that differ in their desensitization kinetics and their desensitization in the presence of cyclothiazide which stabilises the nondesensitized state. TARPs also stabilise the non-desensitized conformation of AMPA receptors and facilitate the action of cyclothiazide [105]. Splice variants of GluK1-3 also exist which affects their trafficking [89, 120]

    Ionotropic glutamate receptors in GtoPdb v.2021.3

    Get PDF
    The ionotropic glutamate receptors comprise members of the NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) and kainate receptor classes, named originally according to their preferred, synthetic, agonist [35, 92, 155]. Receptor heterogeneity within each class arises from the homo-oligomeric, or hetero-oligomeric, assembly of distinct subunits into cation-selective tetramers. Each subunit of the tetrameric complex comprises an extracellular amino terminal domain (ATD), an extracellular ligand binding domain (LBD), 3 TM domains (M1, M3 and M4), a channel lining re-entrant 'p-loop' (M2) located between M1 and M3 and an intracellular carboxy- terminal domain (CTD) [99, 68, 107, 155, 82]. The X-ray structure of a homomeric ionotropic glutamate receptor (GluA2- see below) has recently been solved at 3.6Å resolution [143] and although providing the most complete structural information current available may not representative of the subunit arrangement of, for example, the heteromeric NMDA receptors [71]. It is beyond the scope of this supplement to discuss the pharmacology of individual ionotropic glutamate receptor isoforms in detail; such information can be gleaned from [35, 66, 31, 77, 42, 114, 24, 65, 155, 112, 113, 162]. Agents that discriminate between subunit isoforms are, where appropriate, noted in the tables and additional compounds that distinguish between receptor isoforms are indicated in the text below.The classification of glutamate receptor subunits has been re-addressed by NC-IUPHAR [28]. The scheme developed recommends a nomenclature for ionotropic glutamate receptor subunits that is adopted here.NMDA receptorsNMDA receptors assemble as obligate heteromers that may be drawn from GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B subunits. Alternative splicing can generate eight isoforms of GluN1 with differing pharmacological properties. Various splice variants of GluN2B, 2C, 2D and GluN3A have also been reported. Activation of NMDA receptors containing GluN1 and GluN2 subunits requires the binding of two agonists, glutamate to the S1 and S2 regions of the GluN2 subunit and glycine to S1 and S2 regions of the GluN1 subunit [41, 25]. The minimal requirement for efficient functional expression of NMDA receptors in vitro is a di-heteromeric assembly of GluN1 and at least one GluN2 subunit variant, as a dimer of heterodimers arrangement in the extracellular domain [48, 99, 71]. However, more complex tri-heteromeric assemblies, incorporating multiple subtypes of GluN2 subunit, or GluN3 subunits, can be generated in vitro and occur in vivo. The NMDA receptor channel commonly has a high relative permeability to Ca2+ and is blocked, in a voltage-dependent manner, by Mg2+ such that at resting potentials the response is substantially inhibited.AMPA and Kainate receptorsAMPA receptors assemble as homomers, or heteromers, that may be drawn from GluA1, GluA2, GluA3 and GluA4 subunits. Transmembrane AMPA receptor regulatory proteins (TARPs) of class I (i.e. γ2, γ3, γ4 and γ8) act, with variable stoichiometry, as auxiliary subunits to AMPA receptors and influence their trafficking, single channel conductance gating and pharmacology (reviewed in [43, 103, 153, 64]). Functional kainate receptors can be expressed as homomers of GluK1, GluK2 or GluK3 subunits. GluK1-3 subunits are also capable of assembling into heterotetramers (e.g. GluK1/K2; [87, 119, 118]). Two additional kainate receptor subunits, GluK4 and GluK5, when expressed individually, form high affinity binding sites for kainate, but lack function, but can form heteromers when expressed with GluK1-3 subunits (e.g. GluK2/K5; reviewed in [119, 65, 118]). Kainate receptors may also exhibit 'metabotropic' functions [87, 131]. As found for AMPA receptors, kainate receptors are modulated by auxiliary subunits (Neto proteins, [118, 88]). An important function difference between AMPA and kainate receptors is that the latter require extracellular Na+ and Cl- for their activation [11, 120]. RNA encoding the GluA2 subunit undergoes extensive RNA editing in which the codon encoding a p-loop glutamine residue (Q) is converted to one encoding arginine (R). This Q/R site strongly influences the biophysical properties of the receptor. Recombinant AMPA receptors lacking RNA edited GluA2 subunits are: (1) permeable to Ca2+; (2) blocked by intracellular polyamines at depolarized potentials causing inward rectification (the latter being reduced by TARPs); (3) blocked by extracellular argiotoxin and joro spider toxins and (4) demonstrate higher channel conductances than receptors containing the edited form of GluA2 [139, 63]. GluK1 and GluK2, but not other kainate receptor subunits, are similarly edited and broadly similar functional characteristics apply to kainate receptors lacking either an RNA edited GluK1, or GluK2, subunit [87, 118]. Native AMPA and kainate receptors displaying differential channel conductances, Ca2+ permeabilites and sensitivity to block by intracellular polyamines have been identified [30, 63, 91]. GluA1-4 can exist as two variants generated by alternative splicing (termed ‘flip’ and ‘flop’) that differ in their desensitization kinetics and their desensitization in the presence of cyclothiazide which stabilises the nondesensitized state. TARPs also stabilise the non-desensitized conformation of AMPA receptors and facilitate the action of cyclothiazide [103]. Splice variants of GluK1-3 also exist which affects their trafficking [87, 118]

    Ionotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The ionotropic glutamate receptors comprise members of the NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) and kainate receptor classes, named originally according to their preferred, synthetic, agonist [34, 87, 147]. Receptor heterogeneity within each class arises from the homo-oligomeric, or hetero-oligomeric, assembly of distinct subunits into cation-selective tetramers. Each subunit of the tetrameric complex comprises an extracellular amino terminal domain (ATD), an extracellular ligand binding domain (LBD), three transmembrane domains composed of three membrane spans (M1, M3 and M4), a channel lining re-entrant ‘p-loop’ (M2) located between M1 and M3 and an intracellular carboxy- terminal domain (CTD) [94, 66, 102, 147, 77]. The X-ray structure of a homomeric ionotropic glutamate receptor (GluA2 – see below) has recently been solved at 3.6Å resolution [135] and although providing the most complete structural information current available may not representative of the subunit arrangement of, for example, the heteromeric NMDA receptors [69]. It is beyond the scope of this supplement to discuss the pharmacology of individual ionotropic glutamate receptor isoforms in detail; such information can be gleaned from [34, 65, 30, 73, 41, 108, 23, 64, 147, 106, 107, 152]. Agents that discriminate between subunit isoforms are, where appropriate, noted in the tables and additional compounds that distinguish between receptor isoforms are indicated in the text below.The classification of glutamate receptor subunits has been re-addressed by NC-IUPHAR [27]. The scheme developed recommends a nomenclature for ionotropic glutamate receptor subunits that is adopted here.NMDA receptorsNMDA receptors assemble as obligate heteromers that may be drawn from GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B subunits. Alternative splicing can generate eight isoforms of GluN1 with differing pharmacological properties. Various splice variants of GluN2B, 2C, 2D and GluN3A have also been reported. Activation of NMDA receptors containing GluN1 and GluN2 subunits requires the binding of two agonists, glutamate to the S1 and S2 regions of the GluN2 subunit and glycine to S1 and S2 regions of the GluN1 subunit [40, 24]. The minimal requirement for efficient functional expression of NMDA receptors in vitro is a di-heteromeric assembly of GluN1 and at least one GluN2 subunit variant, as a dimer of heterodimers arrangement in the extracellular domain [47, 94, 69]. However, more complex tri-heteromeric assemblies, incorporating multiple subtypes of GluN2 subunit, or GluN3 subunits, can be generated in vitro and occur in vivo. The NMDA receptor channel commonly has a high relative permeability to Ca2+ and is blocked, in a voltage-dependent manner, by Mg2+ such that at resting potentials the response is substantially inhibited.AMPA and Kainate receptorsAMPA receptors assemble as homomers, or heteromers, that may be drawn from GluA1, GluA2, GluA3 and GluA4 subunits. Transmembrane AMPA receptor regulatory proteins (TARPs) of class I (i.e. γ2, γ3, γ4 and γ8) act, with variable stoichiometry, as auxiliary subunits to AMPA receptors and influence their trafficking, single channel conductance gating and pharmacology (reviewed in [42, 98, 145, 63]). Functional kainate receptors can be expressed as homomers of GluK1, GluK2 or GluK3 subunits. GluK1-3 subunits are also capable of assembling into heterotetramers (e.g. GluK1/K2; [82, 113, 112]). Two additional kainate receptor subunits, GluK4 and GluK5, when expressed individually, form high affinity binding sites for kainate, but lack function, but can form heteromers when expressed with GluK1-3 subunits (e.g. GluK2/K5; reviewed in [113, 64, 112]). Kainate receptors may also exhibit ‘metabotropic’ functions [82, 123]. As found for AMPA receptors, kainate receptors are modulated by auxiliary subunits (Neto proteins, [112, 83]). An important function difference between AMPA and kainate receptors is that the latter require extracellular Na+ and Cl- for their activation [11, 114]. RNA encoding the GluA2 subunit undergoes extensive RNA editing in which the codon encoding a p-loop glutamine residue (Q) is converted to one encoding arginine (R). This Q/R site strongly influences the biophysical properties of the receptor. Recombinant AMPA receptors lacking RNA edited GluA2 subunits are: (1) permeable to Ca2+; (2) blocked by intracellular polyamines at depolarized potentials causing inward rectification (the latter being reduced by TARPs); (3) blocked by extracellular argiotoxin and Joro spider toxins and (4) demonstrate higher channel conductances than receptors containing the edited form of GluA2 [131, 62]. GluK1 and GluK2, but not other kainate receptor subunits, are similarly edited and broadly similar functional characteristics apply to kainate receptors lacking either an RNA edited GluK1, or GluK2, subunit [82, 112]. Native AMPA and kainate receptors displaying differential channel conductances, Ca2+ permeabilites and sensitivity to block by intracellular polyamines have been identified [29, 62, 86]. GluA1-4 can exist as two variants generated by alternative splicing (termed ‘flip’ and ‘flop’) that differ in their desensitization kinetics and their desensitization in the presence of cyclothiazide which stabilises the nondesensitized state. TARPs also stabilise the non-desensitized conformation of AMPA receptors and facilitate the action of cyclothiazide [98]. Splice variants of GluK1-3 also exist which affects their trafficking [82, 112]

    2013b. Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion

    No full text
    ABSTRACT Population studies, preclinical, and clinical trials suggest a role for cyclooxygenase-2 (COX-2, PTGS2) in tumor formation and progression. The downstream prostanoid receptor signaling pathways involved in tumorigenesis are poorly understood, although prostaglandin E2 (PGE 2 ), a major COX-2 metabolite which is usually upregulated in the involved tissues, presumably plays important roles in tumor biology. Taking advantage of our recently identified novel selective antagonist for the EP2 (PTGER2) subtype of PGE 2 receptor, we demonstrated that EP2 receptor activation could promote prostate cancer cell growth and invasion in vitro, accompanied by upregulation of the tumor-promoting inflammatory cytokines, such as IL-1b and IL-6. Our results suggest the involvement of prostaglandin receptor EP2 in cancer cell proliferation and invasion possibly via its inflammatory actions, and indicate that selective blockade of the PGE 2 -EP2 signaling pathway via small molecule antagonists might represent a novel therapy for tumorigenesis

    Selective antagonist reveals the role of prostaglandin receptor EP2 in cancer cell proliferation, invasion and inflammation

    No full text
    ABSTRACT Population studies, preclinical and clinical trials suggest a role for cyclooxygenase-2 (COX-2, PTGS2) in tumor formation and progression. The downstream prostanoid receptor signaling pathways involved in tumorigenesis are poorly understood, although prostaglandin E2 (PGE 2 ), a major COX-2 metabolite in the involved tissues, presumably plays important roles in tumor biology. Taking advantage of our recently-identified novel antagonist for the EP2 (PTGER2) subtype of PGE 2 receptor, we demonstrated that EP2 receptor activation promotes cancer cell growth and invasion in vitro, accompanied by upregulation of the tumor-promoting inflammatory cytokines. Our results indicate that selective block of PGE 2 -EP2 signaling pathway via small molecules might represent a novel therapy for tumorigenesis

    Discovery and characterization of carbamothioylacrylamides as EP2 selective antagonists

    No full text
    Prostanoid receptor EP2 is emerging as a novel target for development of anti-inflammatory drugs for the treatment of chronic neurodegenerative and peripheral diseases; however, the availability of EP2 antagonist probes for exploration of peripheral disease models is very limited. We now report identification and characterization of a novel chemical class of compounds that show nanomolar potency and competitive antagonism of the EP2 receptor. A compound in this class, TG6-129, showed prolonged plasma half-life and did not cross the blood-brain barrier. This compound also suppressed the induction of inflammatory mRNA markers in a macrophage cell line upon activation of EP2. Thus, this compound could be useful as a probe for a variety of peripheral chronic inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease, in which EP2 appears to play a pathogenic role

    Avram Goldstein: The Founder of Molecular Pharmacology

    No full text

    Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation

    No full text
    Long-term cognitive and affective impairments are common problems in the survivors of sepsis, which weakens their vocational and daily life ability. Neuroinflammation has been reported to exert a key role in the development of cognitive deficit in different disorders including epilepsy, Alzheimer’s disease (AD) and stroke. Mice treated with lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, show a robust but short-lived neuroinflammation and develop long-term memory and affective problems. In this study, we test the hypothesis that pharmacological blockade of the EP2 receptor for prostaglandin E2 reduces neuroinflammation and prevents long-term affective and memory deficits in a mouse model of LPS-induced, sepsis-associated encephalopathy (SAE). Our results show that an EP2 antagonist, TG6-10-1, promotes the recovery of body weight, mitigates neuroinflammation as judged by inflammatory cytokines and microgliosis, prevents the loss of synaptic proteins, and ameliorates depression-like behavior in the sucrose preference test as well as memory loss in the novel object recognition test. Our results point to a new avenue to ameliorate neuroinflammation and long-term affective and cognition problems of sepsis survivors
    corecore