12 research outputs found

    Cross-sectional study for determining the prevalence of Q fever in small ruminants and humans at El Minya Governorate, Egypt

    No full text
    Abstract Objective Q fever is a febrile illness caused by the bacterial pathogen Coxiella burnetii (C. burnetii) and is transmitted to humans from small ruminants via contaminated secreta and excreta of infected animals. This pathogen threatens public health; however, little is known regarding Q fever prevalence in humans and small ruminants. Therefore, we employed a cross-sectional design to determine the Q fever seroprevalence and the associated risk factors in small ruminants and their owners in El Minya Governorate, Egypt between August 2016 and January 2017. Results The seroprevalence of C. burnetii IgG antibodies was 25.68% (28 of 109), 28.20% (11 of 39) and 25.71% (9 of 35) in sheep, goats, and humans, respectively. None of the studied variables in small ruminants differed significantly between the seropositive and seronegative animals. There was a significantly higher prevalence (P = 0.0435) and increased odds of exposure was also observed among women (odds ratio, OR = 5.43 (95% CI 1.058–27.84) when compared to men; nevertheless, no significant difference was noted between the infection rate in small ruminants and humans. This study clearly points out that Q fever may be emerging in the area which lay the foundation for early prediction and better management of possible future outbreaks

    Numerical Solution to a One-Dimensional, Nonlinear Problem of Thermoelasticity with Volume Force and Heat Supply in a Slab

    Get PDF
    A numerical solution is presented for a one-dimensional, nonlinear boundary-value problem of thermoelasticity with variable volume force and heat supply in a slab. One surface of the body is subjected to a given periodic displacement and Robin thermal condition, while the other is kept fixed and at zero temperature. Other conditions may be equally treated as well. The volume force and bulk heating simulate the effect of a beam of hot particles infiltrating the medium. The present study is a continuation of previous work by the same authors for the half-space [1]. The presented Figures display the process of propagation and reflection of the coupled nonlinear thermoelastic waves in the slab. They also show the effects of volume force and heat supply on the distributions of the mechanical displacements and temperature inside the medium. The propagation of beats provides evidence for sufficiently large time values
    corecore