3 research outputs found

    Comparison of clinically available dynamic susceptibility contrast post processing software to differentiate progression from pseudoprogression in post-treatment high grade glioma

    Full text link
    INTRODUCTION: The purpose of this retrospective study was to compare two, widely available software packages for calculation of Dynamic Susceptibility Contrast (DSC) perfusion MRI normalized relative Cerebral Blood Volume (rCBV) values to differentiate tumor progression from pseudoprogression in treated high-grade glioma patients. MATERIAL AND METHODS: rCBV maps processed by Siemens Syngo.via (Siemens Healthineers) and Olea Sphere (Olea Medical) software packages were co-registered to contrast-enhanced T1 (T1-CE). Regions of interest based on T1-CE were transferred to the rCBV maps. rCBV was calculated using mean values and normalized using contralateral normal- appearing white matter. The Wilcoxon test was performed to assess for significant differences, and software-specific optimal rCBV cutoff values were determined using the Youden index. Interrater reliability was evaluated for two raters using the intraclass correlation coefficient. RESULTS: 41 patients (18 females; median age = 59 years; range 21-77 years) with 49 new or size-increasing post-treatment contrast-enhancing lesions were included (tumor progression = 40 lesions; pseudoprogression = 9 lesions). Optimal rCBV cutoffs of 1.31 (Syngo.via) and 2.40 (Olea) were significantly different, with an AUC of 0.74 and 0.78, respectively. Interrater reliability was 0.85. DISCUSSION: We demonstrate that different clinically available MRI DSC-perfusion software packages generate significantly different rCBV cutoff values for the differentiation of tumor progression from pseudoprogression in standard-of-care treated high grade gliomas. Physicians may want to determine the unique value of their perfusion software packages on an institutional level in order to maximize diagnostic accuracy when faced with this clinical challenge. Furthermore, combined with implementation of current DSC-perfusion recommendations, multi-center comparability will be improved

    The split apparent diffusion coefficient sign: A novel magnetic resonance imaging biomarker for cortical pathology with possible implications in autoimmune encephalitis

    Get PDF
    Introduction MRI is the imaging modality of choice for assessing patients with encephalopathy. In this context, we discuss a novel biomarker, the “split ADC sign,” where the cerebral cortex demonstrates restricted diffusion (high DWI signal and low ADC) and the underlying white matter demonstrates facilitated diffusion (high or low DWI signal and high ADC). We hypothesize that this sign can be used as a biomarker to suggest either acute encephalitis onset or to raise the possibility of an autoimmune etiology. Materials and Methods A full-text radiological information system search of radiological reports was performed for all entities known to produce restricted diffusion in the cortex excluding stroke between January 2012 and June 2022. Initial MRI studies performed upon onset of clinical symptoms were screened for the split ADC sign. Results 25 subjects were encountered with a positive split ADC sign (15 female; median age = 57 years, range 18–82). Diagnosis included six herpes simplex encephalitis, three peri-ictal MRI changes, eight PRES, two MELAS, and six autoimmune (3 anti-GABAA_{A}R, two seronegative, and one anti-Ma2/Ta). Subjects were imaged at a mean 1.8 days after the onset of symptoms (range 0–8). Discussion We present a novel visual MRI biomarker, the split ADC sign, and highlight its potential usefulness in subjects with encephalopathy to suggest acute disease onset or to raise the possibility of an autoimmune etiology when location-based criteria are applied. When positive, the sign was present on the initial MRI and can therefore be used to help focus further clinical and laboratory workup

    Comparison of clinically available dynamic susceptibility contrast post processing software to differentiate progression from pseudoprogression in post-treatment high grade glioma

    No full text
    Introduction: The purpose of this retrospective study was to compare two, widely available software packages for calculation of Dynamic Susceptibility Contrast (DSC) perfusion MRI normalized relative Cerebral Blood Volume (rCBV) values to differentiate tumor progression from pseudoprogression in treated high-grade glioma patients. Material and Methods: rCBV maps processed by Siemens Syngo.via (Siemens Healthineers) and Olea Sphere (Olea Medical) software packages were co-registered to contrast-enhanced T1 (T1-CE). Regions of interest based on T1-CE were transferred to the rCBV maps. rCBV was calculated using mean values and normalized using contralateral normal- appearing white matter. The Wilcoxon test was performed to assess for significant differences, and software-specific optimal rCBV cutoff values were determined using the Youden index. Interrater reliability was evaluated for two raters using the intraclass correlation coefficient. Results: 41 patients (18 females; median age = 59 years; range 21–77 years) with 49 new or size-increasing post-treatment contrast-enhancing lesions were included (tumor progression = 40 lesions; pseudoprogression = 9 lesions). Optimal rCBV cutoffs of 1.31 (Syngo.via) and 2.40 (Olea) were significantly different, with an AUC of 0.74 and 0.78, respectively. Interrater reliability was 0.85. Discussion: We demonstrate that different clinically available MRI DSC-perfusion software packages generate significantly different rCBV cutoff values for the differentiation of tumor progression from pseudoprogression in standard-of-care treated high grade gliomas. Physicians may want to determine the unique value of their perfusion software packages on an institutional level in order to maximize diagnostic accuracy when faced with this clinical challenge. Furthermore, combined with implementation of current DSC-perfusion recommendations, multi-center comparability will be improved.ISSN:0720-048XISSN:1872-772
    corecore