3,371 research outputs found

    Determining the cosmic ray ionization rate in dynamically evolving clouds

    Full text link
    The ionization fraction is an important factor in determining the chemical and physical evolution of star forming regions. In the dense, dark starless cores of such objects, the ionization rate is dominated by cosmic rays; it is therefore possible to use simple analytic estimators, based on the relative abundances of different molecular tracers, to determine the cosmic ray ionization rate. This paper uses a simple model to investigate the accuracy of two well-known estimators in dynamically evolving molecular clouds. It is found that, although the analytical formulae based on the abundances of H3+,H2,CO,O,H2O and HCO+ give a reasonably accurate measure of the cosmic ray ionization rate in static, quiescent clouds, significant discrepancies occur in rapidly evolving (collapsing) clouds. As recent evidence suggests that molecular clouds may consist of complex, dynamically evolving sub-structure, we conclude that simple abundance ratios do not provide reliable estimates of the cosmic ray ionization rate in dynamically active regions.Comment: Accepted by A&A. 17 pages, 4 figure

    The 6C** Sample and the Highest Redshift Radio Galaxies

    Full text link
    We present a new radio sample, 6C** designed to find radio galaxies at z > 4 and discuss some of its near-infrared imaging follow-up results.Comment: 2 pages, 2 figures, to appear in proceedings of 'Multi-wavelength AGN surveys', Cozumel, 200

    Mapping of interstellar clouds with infrared light scattered from dust: TMC-1N

    Full text link
    Mapping of near-infrared (NIR) scattered light is a recent method for the study of interstellar clouds, complementing other, more commonly used methods, like dust emission and extinction. Our goal is to study the usability of this method on larger scale, and compare the properties of a filament using NIR scattering and other methods. We also study the radiation field and differences in grain emissivity between diffuse and dense areas. We have used scattered J, H, and K band surface brightness WFCAM-observations to map filament TMC-1N in Taurus, covering an area of 1dx1d corresponding to ~(2.44 pc)^2. We have converted the data into optical depth and compared the results with NIR extinction and Herschel observations of submm dust emission. We see the filament in scattered light in all three NIR bands. We note that our WFCAM observations in TMC-1N show notably lower intensity than previous results in Corona Australis using the same method. We show that 3D radiative transfer simulations predict similar scattered surface brightness levels as seen in the observations. However, changing the assumptions about the background can change the results of simulations notably. We derive emissivity by using optical depth in the J band as an independent tracer of column density. We obtain opacity sigma(250um) values 1.7-2.4x10^-25 cm^2/H, depending on assumptions of the extinction curve, which can change the results by over 40%. These values are twice as high as obtained for diffuse areas, at the lower limit of earlier results for denser areas. We show that NIR scattering can be a valuable tool in making high resolution maps. We conclude, however, that NIR scattering observations can be complicated, as the data can show relatively low-level artefacts. This suggests caution when planning and interpreting the observations.Comment: abstract shortened and figures reduced for astrop

    Extremely red galaxy counterparts to 7C radio sources

    Get PDF
    We present RIJHK imaging of seven radio galaxies from the 7C Redshift Survey (7CRS) which lack strong emission lines and we use these data to investigate their spectral energy distributions (SEDs) with models which constrain their redshifts. Six of these seven galaxies have extremely red colours (R-K>5.5) and we find that almost all of them lie in the redshift range 1<z<2. We also present near-infrared spectroscopy of these galaxies which demonstrate that their SEDs are not dominated by emission lines, although tentative lines, consistent with H-alpha at z=1.45 and z=1.61, are found in two objects. Although the red colours of the 7CRS galaxies can formally be explained by stellar populations which are either very old or young and heavily reddened, independent evidence favours the former hypothesis. At z~1.5 at least 1/4 of powerful radio jets are triggered in massive (>L*) galaxies which formed the bulk of their stars several Gyr earlier, that is at epochs corresponding to redshifts z>5. If a similar fraction of all z~1.5 radio galaxies are old, then extrapolation of the radio luminosity function shows that, depending on the radio source lifetimes, between 10-100% of the near-IR selected extremely red object (ERO) population undergo a radio outburst at epochs corresponding to 1<z<2. An ERO found serendipitously in the field of one of the 7CRS radio sources appears to be a radio-quiet analogue of the 7CRS EROs with an emission line likely to be [OII] at z=1.20. The implication is that some of the most massive elliptical galaxies formed the bulk of their stars at z>5 and these objects probably undergo at least two periods of AGN activity: one at high redshift during which the black hole forms and another one at an epoch corresponding to z~1.5.Comment: 20 pages, 10 figures, accepted for publication in MNRA

    The Nature and Evolution of Classical Double Radio Sources from Complete Samples

    Get PDF
    We present a study of the trends in luminosity, linear size, spectral index, and redshift of classical double radio sources from three complete samples selected at successively fainter low radio-frequency flux-limits. We have been able to decouple the effects of the tight correlation between redshift and luminosity (inherent in any single flux-limited sample) which have hitherto hindered interpretation of the relationships between these four source properties. The major trends found are that (i) spectral indices increase with linear size, (ii) rest-frame spectral indices have a stronger dependence on luminosity than on redshift except at high (GHz) frequencies, and that (iii) the linear sizes are smaller at higher redshifts. We reproduce the observed dependences in a model for radio sources (born throughout cosmic time according to a radio-source birth function) whose lobes are fed with a synchrotron-emitting population (whose energy distribution is governed by compact hotspots), and which suffer inverse Compton, synchrotron and adiabatic expansion losses. In simulating the basic observed dependences, we find that there is no need to invoke any systematic change in the environments of these objects with redshift if the consequences of imposing a survey flux-limit on our simulated datasets are properly included in the model. We present evidence that for a radio survey there is an unavoidable `youth--redshift degeneracy', even though radio sources are short-lived relative to the age of the Universe; it is imperative to take this into account in studies which seemingly reveal correlations of source properties with redshift such as the `alignment effect'.Comment: 48 pages, 19 figures, uses aas2pp4.sty. To appear in AJ. Also available at http://www-astro.physics.ox.ac.uk/~kmb References updated and minor typos correcte

    Time and M-theory

    Get PDF
    We review our recent proposal for a background independent formulation of a holographic theory of quantum gravity. The present review incorporates the necessary background material on geometry of canonical quantum theory, holography and spacetime thermodynamics, Matrix theory, as well as our specific proposal for a dynamical theory of geometric quantum mechanics, as applied to Matrix theory. At the heart of this review is a new analysis of the conceptual problem of time and the closely related and phenomenologically relevant problem of vacuum energy in quantum gravity. We also present a discussion of some observational implications of this new viewpoint on the problem of vacuum energy.Comment: 86 pages, 5 figures, LaTeX, typos fixed, references added, and Sec. 6.2 revised; invited review for Int. J. Mod. Phys.

    The radio luminosity function of radio-loud quasars from the 7C Redshift Survey

    Get PDF
    We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density S_151 > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of these have sufficient extended flux to meet the selection criteria, 18 of these have steep radio spectra (hereafter denoted as SSQs). The key advantage of this sample over most samples of RLQs is the lack of an optical magnitude limit. By combining the 7C and 3CRR samples, we have investigated the properties of RLQs as a function of redshift z and radio luminosity L_151. We derive the radio luminosity function (RLF) of RLQs and find that the data are well fitted by a single power-law with slope alpha_1=1.9. We find that there must be a break in the RLQ RLF at log_10(L_151 / W Hz^-1 sr^-1) < 27, in order for the models to be consistent with the 7C and 6C source counts. The z-dependence of the RLF follows a one-tailed gaussian which peaks at z=1.7. We find no evidence for a decline in the co-moving space density of RLQs at higher redshifts. A positive correlation between the radio and optical luminosities of SSQs is observed, confirming a result of Serjeant et al. (1998). We are able to rule out this correlation being due to selection effects or biases in our combined sample. The radio-optical correlation and best-fit model RLF enable us to estimate the distribution of optical magnitudes of quasars in samples selected at low radio frequencies. We conclude that for samples with S_151 < 1 Jy one must use optical data significantly deeper than the POSS-I limit (R approx 20), in order to avoid severe incompleteness.Comment: 28 pages with 13 figures. To appear in MNRA

    Unified Models of Molecular Emission from Class 0 Protostellar Outflow Sources

    Full text link
    Low mass star-forming regions are more complex than the simple spherically symmetric approximation that is often assumed. We apply a more realistic infall/outflow physical model to molecular/continuum observations of three late Class 0 protostellar sources with the aims of (a) proving the applicability of a single physical model for all three sources, and (b) deriving physical parameters for the molecular gas component in each of the sources. We have observed several molecular species in multiple rotational transitions. The observed line profiles were modelled in the context of a dynamical model which incorporates infall and bipolar outflows, using a three dimensional radiative transfer code. This results in constraints on the physical parameters and chemical abundances in each source. Self-consistent fits to each source are obtained. We constrain the characteristics of the molecular gas in the envelopes as well as in the molecular outflows. We find that the molecular gas abundances in the infalling envelope are reduced, presumably due to freeze-out, whilst the abundances in the molecular outflows are enhanced, presumably due to dynamical activity. Despite the fact that the line profiles show significant source-to-source variation, which primarily derives from variations in the outflow viewing angle, the physical parameters of the gas are found to be similar in each core.Comment: MNRAS 12 pages, 16 figure
    • …
    corecore