214 research outputs found

    Meta-analytic framework for efficiently identifying progression groups in highway condition analysis

    Get PDF
    The minimum message length two-dimensional segmenter (MML2DS) criterion is a powerful technique for road condition data analysis developed at the Nottingham Transportation Engineering Centre (NTEC), University of Nottingham. The criterion analyses condition data sets by simultaneously identifying optimum trends in condition progression, the position in time and space of maintenance interventions, longitudinal segments within links, and the error likelihood of each measurement. This is done in an unsupervised manner through classification and regression models on the basis of the minimum message length (MML) metric. Use of MML, however, often requires an exhaustive comparison of all possible models, which naturally raises considerable search-control issues. This is precisely the case with the MML2DS approach. This paper presents an efficient meta-analytic framework for controlling the generation of progression groups, which considerably reduces the search space before the application of MML2DS. This is achieved by identifying founder sets of longitudinal segments, around which families of segments are likely to be formed. An effective subset of these families is then selected, after which the MML2DS criterion is used as the final arbiter to determine ultimate model configurations and fits. This approach has proved to be very powerful, resulting in significant improvements in efficiency to the effect that accurate results are obtained in a few minutes where it previously took weeks with much smaller data sets. The indications are that this approach can be applied to other techniques besides MML2DS

    Star formation in the massive cluster merger Abell 2744

    Full text link
    We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.Comment: Accepted by MNRAS. 12 pages, 7 figures (high resolution versions of Figs. 1 & 2 are available in the published PDF

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Full text link
    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L_2-10 keV = 8.2 x 10^45 erg/s) galaxy cluster which hosts an extremely strong cooling flow (dM/dt = 3820 +/- 530 Msun/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Msun/yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.Comment: 11 pages, 3 figures, 1 table. Supplemental material contains 15 additional pages. Published in Natur

    AGN Jet-induced Feedback in Galaxies. II. Galaxy colours from a multicloud simulation

    Get PDF
    We study the feedback from an AGN on stellar formation within its host galaxy, mainly using one high resolution numerical simulation of the jet propagation within the interstellar medium of an early-type galaxy. In particular, we show that in a realistic simulation where the jet propagates into a two-phase ISM, star formation can initially be slightly enhanced and then, on timescales of few million years, rapidly quenched, as a consequence both of the high temperatures attained and of the reduction of cloud mass (mainly due to Kelvin-Helmholtz instabilities). We then introduce a model of (prevalently) {\em negative} AGN feedback, where an exponentially declining star formation is quenched, on a very short time scale, at a time t_AGN, due to AGN feedback. Using the Bruzual & Charlot (2003) population synthesis model and our star formation history, we predict galaxy colours from this model and match them to a sample of nearby early-type galaxies showing signs of recent episodes of star formation (Kaviraj et al. 2007). We find that the quantity t_gal - t_AGN, where t_gal is the galaxy age, is an excellent indicator of the presence of feedback processes, and peaks significantly around t_gal - t_AGN \approx 0.85 Gyr for our sample, consistent with feedback from recent energy injection by AGNs in relatively bright (M_{B} \lsim -19) and massive nearby early-type galaxies. Galaxies that have experienced this recent feedback show an enhancement of 3 magnitudes in NUV(GALEX)-g, with respect to the unperturbed, no-feedback evolution. Hence they can be easily identified in large combined near UV-optical surveys.Comment: 18 pages, 16 figures, accepted for publication on MNRAS. This version includes revisions after the referee's repor

    Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    Get PDF
    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1mm continuum images and wide bandwidth spectra (73-111GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z=2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup=2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0±0.2)×1011 M⊙/μ, and the mean dust mass is (2.0±0.2)×109 M⊙/μ, where μ≈2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR≈55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the LCO′L^{\prime }_{\rm CO}-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminositie

    A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    Get PDF
    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 _ z _ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (LIR >1011.5 L_). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C ii] 157.7μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have LCii/LFIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C ii] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an LCii−LFIR relation with a slope of unity, from which local ULIRGs and high-z active-galactic-nucleus-dominated sources are clear outliers.We also confirm that the strong anti-correlation between the LCii/LFIR ratio and the far-IR color L60/L100 observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower LC ii/LFIR at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high LC ii/LFIR ratios, the moderate star formation efficiencies (LIR/L _COor LIR/MH2 ), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ∼ 0.3

    JWST NIRCam + NIRSpec: Interstellar medium and stellar populations of young galaxies with rising star formation and evolving gas reservoirs

    Get PDF
    We present an interstellar medium and stellar population analysis of three spectroscopically confirmed z > 7 galaxies in the Early Release Observations JWST/NIRCam and JWST/NIRSpec data of the SMACS J0723.3-7327 cluster. We use the Bayesian spectral energy distribution-fitting code PROSPECTOR with a flexible star formation history (SFH), a variable dust attenuation law, and a self-consistent model of nebular emission (continuum and emission lines). Importantly, we self-consistently fit both the emission line fluxes from JWST/NIRSpec and the broad-band photometry from JWST/NIRCam, taking into account slit-loss effects. We find that these three z=7.6-8.5 galaxies (M-* approximate to 10(8) M-circle dot) are young with rising SFHs and mass-weighted ages of 3-4 Myr, though we find indications for underlying older stellar populations. The inferred gas-phase metallicities broadly agree with the direct metallicity estimates from the auroral lines. The galaxy with the lowest gas-phase metallicity (Z(gas) = 0.06 Z(circle dot)) has a steeply rising SFH, is very compact ( <0.2 kpc), and has a high star formation rate surface density (Sigma(SFR) approximate to 22 M-circle dot yr(-1) kpc(-2)), consistent with rapid gas accretion. The two other objects with higher gas-phase metallicities show more complex multicomponent morphologies on kpc scales, indicating that their recent increase in star formation rate is driven by mergers or internal, gravitational instabilities. We discuss effects of assuming different SFH priors or only fitting the photometric data. Our analysis highlights the strength and importance of combining JWST imaging and spectroscopy for fully assessing the nature of galaxies at the earliest epochs
    • …
    corecore