7 research outputs found

    PASSIVE ATTITUDE STABILIZATION FOR SMALL SATELLITES

    Get PDF
    This thesis addresses the problem of designing and evaluating passive satellite attitude control systems for small satellites. Passive stabilization techniques such as Gravity Gradient stabilization, Passive Magnetic Stabilization, and Aerodynamic stabilization in Low Earth Orbit utilize the geometric and magnetic design of a satellite and the orbit properties to passively provide attitude stabilization and basic pointing. The design of such stabilization systems can be done using a high fidelity simulation of the satellite and the environmental effects in the orbit under consideration to study the on-orbit behavior and the effectiveness of the stability system in overcoming the disturbance torques. The Orbit Propagator described in this thesis is developed to include models for orbit parameters, Gravity Gradient torque, Aerodynamic Torque, Magnetic Torque, and Magnetic Hysteresis Material for angular rate damping. Aerodynamic stabilization of a three-unit CubeSat with deployable side panels in a “shuttlecock” design is studied in detail. Finally, the Passive Magnetic Stabilization system of KySat-1, a one-unit CubeSat, is also described in detail and the simulation results are shown

    VISUAL ATTITUDE PROPAGATION FOR SMALL SATELLITES

    Get PDF
    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A “stellar gyroscope” is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager’s field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating false-positive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. The stellar gyroscope is a technology demonstration experiment on KySat-2, a 1-Unit CubeSat being developed in Kentucky that is in line to launch with the NASA ELaNa CubeSat Launch Initiative. It has also been adopted by industry as a sensor for CubeSat Attitude Determination and Control Systems (ADCS)

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study

    No full text
    Background: Surgical strategies are being adapted to face the COVID-19 pandemic. Recommendations on the management of acute appendicitis have been based on expert opinion, but very little evidence is available. This study addressed that dearth with a snapshot of worldwide approaches to appendicitis. Methods: The Association of Italian Surgeons in Europe designed an online survey to assess the current attitude of surgeons globally regarding the management of patients with acute appendicitis during the pandemic. Questions were divided into baseline information, hospital organization and screening, personal protective equipment, management and surgical approach, and patient presentation before versus during the pandemic. Results: Of 744 answers, 709 (from 66 countries) were complete and were included in the analysis. Most hospitals were treating both patients with and those without COVID. There was variation in screening indications and modality used, with chest X-ray plus molecular testing (PCR) being the commonest (19\ub78 per cent). Conservative management of complicated and uncomplicated appendicitis was used by 6\ub76 and 2\ub74 per cent respectively before, but 23\ub77 and 5\ub73 per cent, during the pandemic (both P < 0\ub7001). One-third changed their approach from laparoscopic to open surgery owing to the popular (but evidence-lacking) advice from expert groups during the initial phase of the pandemic. No agreement on how to filter surgical smoke plume during laparoscopy was identified. There was an overall reduction in the number of patients admitted with appendicitis and one-third felt that patients who did present had more severe appendicitis than they usually observe. Conclusion: Conservative management of mild appendicitis has been possible during the pandemic. The fact that some surgeons switched to open appendicectomy may reflect the poor guidelines that emanated in the early phase of SARS-CoV-2

    Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    No full text
    Background: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. Aim of the study: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). Methods: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. Results: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p &lt; 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. Conclusions: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures

    International Impact of COVID-19 on the Diagnosis of Heart Disease

    No full text
    Background: The coronavirus disease 2019 (COVID-19) pandemic has adversely affected diagnosis and treatment of noncommunicable diseases. Its effects on delivery of diagnostic care for cardiovascular disease, which remains the leading cause of death worldwide, have not been quantified. Objectives: The study sought to assess COVID-19's impact on global cardiovascular diagnostic procedural volumes and safety practices. Methods: The International Atomic Energy Agency conducted a worldwide survey assessing alterations in cardiovascular procedure volumes and safety practices resulting from COVID-19. Noninvasive and invasive cardiac testing volumes were obtained from participating sites for March and April 2020 and compared with those from March 2019. Availability of personal protective equipment and pandemic-related testing practice changes were ascertained. Results: Surveys were submitted from 909 inpatient and outpatient centers performing cardiac diagnostic procedures, in 108 countries. Procedure volumes decreased 42% from March 2019 to March 2020, and 64% from March 2019 to April 2020. Transthoracic echocardiography decreased by 59%, transesophageal echocardiography 76%, and stress tests 78%, which varied between stress modalities. Coronary angiography (invasive or computed tomography) decreased 55% (p &lt; 0.001 for each procedure). In multivariable regression, significantly greater reduction in procedures occurred for centers in countries with lower gross domestic product. Location in a low-income and lower–middle-income country was associated with an additional 22% reduction in cardiac procedures and less availability of personal protective equipment and telehealth. Conclusions: COVID-19 was associated with a significant and abrupt reduction in cardiovascular diagnostic testing across the globe, especially affecting the world's economically challenged. Further study of cardiovascular outcomes and COVID-19–related changes in care delivery is warranted

    Impact of COVID-19 on Diagnostic Cardiac Procedural Volume in Oceania: The IAEA Non-Invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    No full text
    Objectives: The INCAPS COVID Oceania study aimed to assess the impact caused by the COVID-19 pandemic on cardiac procedure volume provided in the Oceania region. Methods: A retrospective survey was performed comparing procedure volumes within March 2019 (pre-COVID-19) with April 2020 (during first wave of COVID-19 pandemic). Sixty-three (63) health care facilities within Oceania that perform cardiac diagnostic procedures were surveyed, including a mixture of metropolitan and regional, hospital and outpatient, public and private sites, and 846 facilities outside of Oceania. The percentage change in procedure volume was measured between March 2019 and April 2020, compared by test type and by facility. Results: In Oceania, the total cardiac diagnostic procedure volume was reduced by 52.2% from March 2019 to April 2020, compared to a reduction of 75.9% seen in the rest of the world (p&lt;0.001). Within Oceania sites, this reduction varied significantly between procedure types, but not between types of health care facility. All procedure types (other than stress cardiac magnetic resonance [CMR] and positron emission tomography [PET]) saw significant reductions in volume over this time period (p&lt;0.001). In Oceania, transthoracic echocardiography (TTE) decreased by 51.6%, transoesophageal echocardiography (TOE) by 74.0%, and stress tests by 65% overall, which was more pronounced for stress electrocardiograph (ECG) (81.8%) and stress echocardiography (76.7%) compared to stress single-photon emission computerised tomography (SPECT) (44.3%). Invasive coronary angiography decreased by 36.7% in Oceania. Conclusion: A significant reduction in cardiac diagnostic procedure volume was seen across all facility types in Oceania and was likely a function of recommendations from cardiac societies and directives from government to minimise spread of COVID-19 amongst patients and staff. Longer term evaluation is important to assess for negative patient outcomes which may relate to deferral of usual models of care within cardiology
    corecore