2,476 research outputs found

    Structural Phase Stability in Fluorinated Calcium Hydride

    Full text link
    In order to improve the hydrogen storage properties of calcium hydride (CaH2), we have tuned its thermodynamical properties through fluorination. Using ab-initio total energy calculations based on density functional theory, the structural stability, electronic structure and chemical bonding of CaH2-xFx systems are investigated. The phase transition of fluorinated systems from orthorhombic to cubic structure has been observed at 18% fluorine doped CaH2. The phase stability analysis shows that CaH2-xFx systems are highly stable and the stability is directly correlating with their ionicity. Density of states (DOS) plot reveals that CaH2-xFx systems are insulators. Partial DOS and charge density analyses conclude that these systems are governed by ionic bonding. Our results show that H closer to F can be removed more easily than that far away from F and this is due to disproportionation induced in the bonding interaction by fluorination

    Chemical Bonding Analysis on Amphoteric Hydrogen - Alkaline Earth Ammine Borohydrides

    Full text link
    Usually the ions in solid are in the positive oxidation states or in the negative oxidation state depending upon the chemical environment. It is highly unusual for an ion having both positive as well as negative oxidation state in a particular compound. Structural analysis suggest that the alkaline earth ammine borohydrides (AABH) with the chemical formula M (BH4)2(NH3)2 (M = Mg, Ca, or Sr) where hydrogen is present in +1 and -1 oxidation states. In order to understand the oxidation states of hydrogen and also the character of chemical bond present in AABH we have made charge density, electron localization function, Born effective charge, Bader effective charge, and density of states analyses using result from the density functional calculations. Our detailed analyses show that hydrogen is in amphoteric behavior with hydrogen closer to boron is in negative oxidation state and that closer to nitrogen is in the positive oxidation state. Due to the presence of finite covalent bonding between the consitutents in AABH the oxidation state of hydrogen is non-interger value. The confirmation of the presence of amphtoric behavior of hydrogen in AABH has implication in hydrogen storage applications

    Magnetoelectric Properties of Pb Free Bi2FeTiO6: A Theoretical Investigation

    Full text link
    The structural, electronic, magnetic and ferroelectric properties of Pb free double perovskite multiferroic Bi2FeTiO6 are investigated using density functional theory within the general gradient approximation (GGA) method. Our structural optimization using total energy calculations for different potential structures show a minimum energy for a non-centrosymmetric rhombohedral structure with R3 space group. Bi2FeTiO6 is found to be an antiferromagnetic insulator with C-type magnetic ordering with bandgap value of 0.3 eV. The calculated magnetic moment of 3.52 \mu_B at Fe site shows the high spin arrangement of 3d electrons which is also confirmed by our orbital projected density of states analysis. We have analyzed the characteristics of bonding present between the constituents of Bi2FeTiO6 with the help of calculated partial density of states and Born effective charges. The ground state of the nearest centrosymmetric structure is found to be a G-type antiferromagnet with half metallicity showing that by the application of external electric field we can not only get a polarized state but also change the magnetic ordering and electronic structure in the present compound indicating strong magnetoelectric coupling. The cation sites the coexistence of Bi 6s lone pair (bring disproportionate charge distribution) and Ti4+ d0 ions which brings covalency produces off-center displacement and favors a non-centrosymmetric ground state and thus ferroelectricity. Our Berry phase calculation gives a polarization of 48 \muCcm-2 for Bi2FeTiO6.Comment: 4 pages, 5 picture

    Search for Thermoelectrics with High Figure of Merit in half-Heusler compounds with multinary substitution

    Full text link
    In order to improve the thermoelectric performance of TiCoSb we have substituted 50% of Ti equally with Zr and Hf at Ti site and Sb with Sn and Se equally at Sb site. The electronic structure of Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 is investigated using the full potential linearized augmented plane wave method and the thermoelectric transport properties are calculated on the basis of semi-classical Boltzmann transport theory. Our band structure calculations show that Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 has semiconducting behavior with indirect band gap value of 0.98 eV which follow the empirical rule of 18 valence-electron content to bring semiconductivity in half Heusler compounds, indicating that one can have semiconducting behavior in multinary phase of half Heusler compounds if they full fill the 18 VEC rule and this open-up the possibility of designing thermoelectrics with high figure of merit in half Heusler compounds. We show that at high temperature of around 700K Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 has high thermoelectric figure of merit of ZT = 1.05 which is higher than that of TiCoSb (~ 0.95) suggesting that by going from ternary to multinary phase system one can enhance the thermoelectric figure of merit at higher temperatures

    Theoretical Investigation on the Effect of multinary Isoelectronic Substitution on TiCoSb based half-Heusler alloys

    Full text link
    To understand the effect of isoelectronic substitution on thermoelectric properties of TiCoSb based half - Heusler (HH) alloys, we have systematically studied the transport properties with substitution of Zr at Ti and Bi at Sb sites. The electronic structure of TixZr1-xCoSbxBi1-x (x = 0.25, 0.5, 0.75) and parent TiCoSb are investigated using the full potential linearized augmented plane wave method and the thermoelectric transport properties are calculated on the basis of semiclassical Boltzmann transport theory. The band analysis of the calculated band structures reveal that TixZr1-xCoSbxBi1-x has semiconducting behavior with indirect band gap at x = 0.25, 0.5 concentration and direct band gap behavior at x = 0.75 concentration. The TixZr1-xCoSbxBi1-x (x = 0.25, 0.5, 0.75) compounds show smaller band gap values as compared to the pure TiCoSb. The d electrons of Ti/Zr and Co dominate the electronic transport properties of TixZr1-xCoSbxBi1-x system. All these systems follow the empirical rule of 18 valence-electron content to bring semiconductivity in HH alloys. The isoelectronic substitution in TiCoSb can tune the band structure by shifting the Fermi level. This provides us lot of possibilities to get the desired band gap values for designing thermoelectrics with high efficiency. In this study we have showed that the isoelectronic substitution at both Ti and Sb site of TiCoSb has very small effect for increasing the ZT values and one should go for isoelectronic substitution at any one sites of TiCoSb HH alloys alone to improve ZT

    Effect of multinary substitution on electronic and transport properties of TiCoSb based half-Heusler alloys

    Full text link
    The electronic structures of TixZrx/2CoPbxTex, TixZrx/2Hfx/2CoPbxTex (x = 0.5), and the parent compound TiCoSb were investigated using the full potential linearized augmented plane wave method. The thermoelectric transport properties of these alloys are calculated on the basis of semi-classical Boltzmann transport theory. From the band structure calculations we show that the substitution of Zr,Hf in the Ti site and Pb and Te in the Sb site lower the band gap value and also change the indirect band (IB) gap of TiCoSb to the direct band (DB) gap. The calculated band gap of TiCoSb, TixZrx/2CoPbxTex, and TixZrx/2Hfx/2CoPbxTex are 1.04 eV (IB), 0.92 eV (DB), and 0.93 eV (DB), respectively. All these alloys follow the empirical rule of 18 valence-electron content which is essential for bringing semiconductivity in half Heusler alloys. It is shown that the substitution of Hf at the Ti site improve the ZT value (~1.05) at room temperature, whereas there is no significant difference in ZT is found at higher temperature. Based on the calculated thermoelectric transport properties, we conclude that the appropriate concentration of Hf substitution can further improve the thermoelectric performance of TixZrx/2Hfx/2CoPbxTex

    Phosphorene-AsP Heterostructure as a Potential Excitonic Solar Cell Material - A First Principles Study

    Full text link
    Solar energy conversion to produce electricity using photovoltaics is an emerging area in alternative energy research. Herein, we report on the basis of density functional calculations, phosphorene/AsP heterostructure could be a promising material for excitonic solar cells (XSCs). Our HSE06 functional calculations show that the band gap of both phosphorene and AsP fall exactly into the optimum value range according to XSCs requirement. The calculated effective mass of electrons and holes show anisotropic in nature with effective masses along Γ{\Gamma}-X direction is lower than the Γ{\Gamma}-Y direction and hence the charge transport will be faster along Γ{\Gamma}-X direction. The wide energy range of light absorption confirms the potential use of these materials for solar cell applications. Interestingly, phosphorene and AsP monolayer forms a type-II band alignment which will enhance the separation of photogenerated charge carriers and hence the recombination rate will be lower which can further improve its photo-conversion efficiency if one use it in XSCs

    Ti4+ Substituted Magnesium Hydride as Promising Material for Hydrogen Storage and Photovoltaic Applications

    Full text link
    In order to overcome the disadvantages of MgH2 towards its applications in on-board hydrogen storage, first principle calculations have been performed for Ti (2+, 3+, and 4+) substituted MgH2. Our calculated enthalpy of formation and H site energy implies that Ti substitution in Mg site reduces the stability of MgH2 which improve the hydrogen storage properties and Ti prefers to be in +4 oxidation state in MgH2. The bonding analyses through partial density of states, electron localization function and Bader charge of these systems confirm the existence of iono-covalent bonding. Electronic structure obtained from hybrid functional calculations show that intermediate bands (IB) are formed in Ti4+ substituted MgH2 which could improve the solar cell efficiencies due to multiple photon absorption from valence band to conduction band via IBs and converts low energy photons in the solar spectrum also into electricity. Further, our calculated carrier effective masses and optical absorption spectra show that Ti4+ substituted MgH2 is suitable for higher efficiency photovoltaic applications. Our results suggest that Ti4+ substituted MgH2 can be considered as a promising material for hydrogen storage as well as photovoltaic applications
    • …
    corecore