377 research outputs found

    Hiding in plain sight: the globally distributed bacterial candidate phylum PAUC34f

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, M. L., Becraft, E. D., Pachiadaki, M., Brown, J. M., Jarett, J. K., Gasol, J. M., Ravin, N. V., Moser, D. P., Nunoura, T., Herndl, G. J., Woyke, T., & Stepanauskas, R. Hiding in plain sight: the globally distributed bacterial candidate phylum PAUC34f. Frontiers in Microbiology, 11, (2020): 376, doi: 10.3389/fmicb.2020.00376.Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results of metagenome fragment recruitment suggest that some PAUC34f lineages represent relatively abundant, free-living cells in environments other than sponge microbiomes, including the deep ocean. Both phylogenetic and biogeographic patterns, as well as genome content analyses suggest that PAUC34f associations with hosts evolved independently multiple times, while free-living lineages of PAUC34f are distinct and relatively abundant in a wide range of environments.This work was funded by the United States National Science Foundation grants 1460861 (REU site at Bigelow Laboratory for Ocean Sciences), 1441717, 1335810, and 1232982 to RS, and the Simons Foundation (Life Sciences Project Award ID 510023) to RS. NR was supported by the Ministry of Science and Higher Education of Russia. GH was supported by the Austrian Science Fund (FWF) project ARTEMIS (P28781-B21) and the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC (Grant Agreement No. 268595). JG was supported by Spanish project RTI2018-101025-B-I00. TW and JJ were funded by the U.S. Department of Energy, Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231

    The relationship between physical activity, and physical performance and psycho-cognitive functioning in older adults living in residential aged care facilities

    Get PDF
    Insight into modifiable factors related to falls risk in older adults living in residential aged care facilities (RACFs) is necessary to tailor preventive strategies for this high-risk population. Associations between physical activity (PA), physical performance and psycho-cognitive functioning have been understudied in aged care residents. This study investigated associations between PA, and both physical performance and psycho-cognitive functioning in older adults living in RACFs.Cross-sectional study.Forty-four residents aged 85±8years were recruited from four RACFs located in Southeast Queensland. PA was assessed as the average time spent walking in hours/day using activPAL3™. Physical performance tests included balance, gait speed, dual-task ability, reaction time, coordination, grip strength, and leg strength and power. Psycho-cognitive questionnaires included quality of life, balance confidence, fear of falling and cognitive functioning. Associations between PA and each outcome measure were analysed using linear or ordinal regression models.The average time spent walking was 0.5±0.4h/day. Higher levels of PA were significantly associated with better balance (compared with low PA, medium: B=1.6; high: B=1.3) and dual-task ability (OR=7.9 per 0.5h/day increase). No statistically significant associations were found between PA and the other physical and psycho-cognitive measures.More physically active residents scored higher on balance and dual-task ability, which are key predictors of falls risk. This suggests that physical activity programs targeting balance and dual-task ability could help prevent falls in aged care residents

    Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells

    Get PDF
    Blast-Induced Traumatic Brain Injury (bTBI) describes a spectrum of injuries caused by an explosive force that results in changes in brain function. The mechanism responsible for primary bTBI following a blast shockwave remains unknown. We have developed a pneumatic device that delivers shockwaves, similar to those known to induce bTBI, within a chamber optimal for fluorescence microscopy. Abrupt changes in pressure can be created with and without the presence of shear forces at the surface of cells. In primary cultures of human central nervous system cells, the cellular calcium response to shockwaves alone was negligible. Even when the applied pressure reached 15 atm, there was no damage or excitation, unless concomitant shear forces, peaking between 0.3 to 0.7 Pa, were present at the cell surface. The probability of cellular injury in response to a shockwave was low and cell survival was unaffected 20 hours after shockwave exposure

    Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease,using transposonaided capture (TRACA)

    Get PDF
    The human oral cavity is host to a complex microbial community estimated to comprise > 700 bacterial species, of which at least half are thought to be not yet cultivable in vitro. To investigate the plasmids present in this community, we used a transposon-aided capture system, which allowed the isolation of plasmids from human oral supra- and subgingival plaque samples. Thirty-two novel plasmids and a circular molecule that could be an integrase-generated circular intermediate were isolated

    Defining the molecular role of gp91phox in the immune manifestation of acute allergic asthma using a preclinical murine model

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The phenomena manifested during inflammation require interplay between circulating effector cells, local resident cells, soluble mediators and genetic host factors to establish, develop and maintain itself. Of the molecues involed in the initiation and perpetuation of acute allergic inflammation in asthma, the involvement of effector cells in redox reactions for producing O<sub>2</sub><sup>- </sup>(superoxide anion) through the mediation of NADPH oxidase is a critical step. Prior data suggest that reactive oxygen species (ROS) produced by NADPH oxidase homologues in non-phagocytic cells play an important role in the regulation of signal transduction, while macrophages use a membrane-associated NADPH oxidase to generate an array of oxidizing intermediates which inactivate MMPs on or near them.</p> <p>Materials and Methods and Treatment</p> <p>To clarify the role of gp91phox subunit of NADPH oxidase in the development and progression of an acute allergic asthma phenotype, we induced allergen dependent inflammation in a gp91<it><sup>phox</sup></it>-/- single knockout and a gp91phox-/-MMP-12-/- double knockout mouse models.</p> <p>Results</p> <p>In the knockout mice, both inflammation and airway hyperreactivity were more extensive than in wildtype mice post-OVA. Although OVA-specific IgE in plasma were comparable in wildtype and knockout mice, enhanced inflammatory cell recruitment from circulation and cytokine release in lung and BALf, accompanied by higher airway resistance as well as Penh in response to methacholine, indicate a regulatory role for NADPH oxidase in development of allergic asthma. While T cell mediated functions like Th2 cytokine secretion, and proliferation to OVA were upregulated synchronous with the overall robustness of the asthma phenotype, macrophage upregulation in functions such as proliferation, and mixed lymphocyte reaction indicate a regulatory role for gp91phox and an overall non-involvement or synergistic involvement of MMP12 in the response pathway (comparing data from gp91phox-/- and gp91phox-/-MMP-12-/- mice).</p

    Shunting Inhibition Controls the Gain Modulation Mediated by Asynchronous Neurotransmitter Release in Early Development

    Get PDF
    The sensitivity of a neuron to its input can be modulated in several ways. Changes in the slope of the neuronal input-output curve depend on factors such as shunting inhibition, background noise, frequency-dependent synaptic excitation, and balanced excitation and inhibition. However, in early development GABAergic interneurons are excitatory and other mechanisms such as asynchronous transmitter release might contribute to regulating neuronal sensitivity. We modeled both phasic and asynchronous synaptic transmission in early development to study the impact of activity-dependent noise and short-term plasticity on the synaptic gain. Asynchronous release decreased or increased the gain depending on the membrane conductance. In the high shunt regime, excitatory input due to asynchronous release was divisive, whereas in the low shunt regime it had a nearly multiplicative effect on the firing rate. In addition, sensitivity to correlated inputs was influenced by shunting and asynchronous release in opposite ways. Thus, asynchronous release can regulate the information flow at synapses and its impact can be flexibly modulated by the membrane conductance

    Cholera Toxin Regulates a Signaling Pathway Critical for the Expansion of Neural Stem Cell Cultures from the Fetal and Adult Rodent Brains

    Get PDF
    Background: New mechanisms that regulate neural stem cell (NSC) expansion will contribute to improved assay systems and the emerging regenerative approach that targets endogenous stem cells. Expanding knowledge on the control of stem cell self renewal will also lead to new approaches for targeting the stem cell population of cancers. Methodology/Principal Findings: Here we show that Cholera toxin regulates two recently characterized NSC markers, the Tie2 receptor and the transcription factor Hes3, and promotes the expansion of NSCs in culture. Cholera toxin increases immunoreactivity for the Tie2 receptor and rapidly induces the nuclear localization of Hes3. This is followed by powerful cultured NSC expansion and induction of proliferation both in the presence and absence of mitogen. Conclusions/Significance: Our data suggest a new cell biological mechanism that regulates the self renewal and differentiation properties of stem cells, providing a new logic to manipulate NSCs in the context of regenerative disease and cancer
    corecore