165 research outputs found

    Exponential Family Matrix Completion under Structural Constraints

    Full text link
    We consider the matrix completion problem of recovering a structured matrix from noisy and partial measurements. Recent works have proposed tractable estimators with strong statistical guarantees for the case where the underlying matrix is low--rank, and the measurements consist of a subset, either of the exact individual entries, or of the entries perturbed by additive Gaussian noise, which is thus implicitly suited for thin--tailed continuous data. Arguably, common applications of matrix completion require estimators for (a) heterogeneous data--types, such as skewed--continuous, count, binary, etc., (b) for heterogeneous noise models (beyond Gaussian), which capture varied uncertainty in the measurements, and (c) heterogeneous structural constraints beyond low--rank, such as block--sparsity, or a superposition structure of low--rank plus elementwise sparseness, among others. In this paper, we provide a vastly unified framework for generalized matrix completion by considering a matrix completion setting wherein the matrix entries are sampled from any member of the rich family of exponential family distributions; and impose general structural constraints on the underlying matrix, as captured by a general regularizer R(.)\mathcal{R}(.). We propose a simple convex regularized MM--estimator for the generalized framework, and provide a unified and novel statistical analysis for this general class of estimators. We finally corroborate our theoretical results on simulated datasets.Comment: 20 pages, 9 figure

    High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods

    Full text link
    In this paper we consider the task of estimating the non-zero pattern of the sparse inverse covariance matrix of a zero-mean Gaussian random vector from a set of iid samples. Note that this is also equivalent to recovering the underlying graph structure of a sparse Gaussian Markov Random Field (GMRF). We present two novel greedy approaches to solving this problem. The first estimates the non-zero covariates of the overall inverse covariance matrix using a series of global forward and backward greedy steps. The second estimates the neighborhood of each node in the graph separately, again using greedy forward and backward steps, and combines the intermediate neighborhoods to form an overall estimate. The principal contribution of this paper is a rigorous analysis of the sparsistency, or consistency in recovering the sparsity pattern of the inverse covariance matrix. Surprisingly, we show that both the local and global greedy methods learn the full structure of the model with high probability given just O(dlog⁑(p))O(d\log(p)) samples, which is a \emph{significant} improvement over state of the art β„“1\ell_1-regularized Gaussian MLE (Graphical Lasso) that requires O(d2log⁑(p))O(d^2\log(p)) samples. Moreover, the restricted eigenvalue and smoothness conditions imposed by our greedy methods are much weaker than the strong irrepresentable conditions required by the β„“1\ell_1-regularization based methods. We corroborate our results with extensive simulations and examples, comparing our local and global greedy methods to the β„“1\ell_1-regularized Gaussian MLE as well as the Neighborhood Greedy method to that of nodewise β„“1\ell_1-regularized linear regression (Neighborhood Lasso).Comment: Accepted to AI STAT 2012 for Oral Presentatio

    High-dimensional Ising model selection using β„“1{\ell_1}-regularized logistic regression

    Full text link
    We consider the problem of estimating the graph associated with a binary Ising Markov random field. We describe a method based on β„“1\ell_1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an β„“1\ell_1-constraint. The method is analyzed under high-dimensional scaling in which both the number of nodes pp and maximum neighborhood size dd are allowed to grow as a function of the number of observations nn. Our main results provide sufficient conditions on the triple (n,p,d)(n,p,d) and the model parameters for the method to succeed in consistently estimating the neighborhood of every node in the graph simultaneously. With coherence conditions imposed on the population Fisher information matrix, we prove that consistent neighborhood selection can be obtained for sample sizes n=Ξ©(d3log⁑p)n=\Omega(d^3\log p) with exponentially decaying error. When these same conditions are imposed directly on the sample matrices, we show that a reduced sample size of n=Ξ©(d2log⁑p)n=\Omega(d^2\log p) suffices for the method to estimate neighborhoods consistently. Although this paper focuses on the binary graphical models, we indicate how a generalization of the method of the paper would apply to general discrete Markov random fields.Comment: Published in at http://dx.doi.org/10.1214/09-AOS691 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparse Additive Models

    Full text link
    We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use of arbitrary nonparametric smoothers. An analysis of the theoretical properties of SpAM is given. We also study a greedy estimator that is a nonparametric version of forward stepwise regression. Empirical results on synthetic and real data are presented, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data
    • …
    corecore