4 research outputs found

    GLADS: A gel-less approach for detection of STMS markers in wheat and rice.

    No full text
    Sequence tagged microsatellite site (STMS) are useful PCR based DNA markers. Wide genome coverage, high polymorphic index and co-dominant nature make STMS a preferred choice for marker assisted selection (MAS), genetic diversity analysis, linkage mapping, seed genetic purity analysis etc. Routine STMS analysis involving low-throughput, laborious and time-consuming polyacrylamide/agarose gels often limit their full utility in crop breeding experiments that involve large populations. Therefore, convenient, gel-less marker detection methods are highly desirable for STMS markers. The present study demonstrated the utility of SYBR Green dye based melt-profiling as a simple and convenient gel-less approach for detection of STMS markers (referred to as GLADS) in bread wheat and rice. The method involves use of SYBR Green dye during PCR amplification (or post-PCR) of STMS markers followed by generation of a melt-profile using controlled temperature ramp rate. The STMS amplicons yielded characteristic melt-profiles with differences in melting temperature (Tm) and profile shape. These characteristic features enabled melt-profile based detection and differentiation of STMS markers/alleles in a gel-less manner. The melt-profile approach allowed assessment of the specificity of the PCR assay unlike the end-point signal detection assays. The method also allowed multiplexing of two STMS markers with non-overlapping melt-profiles. In principle, the approach can be effectively used in any crop for STMS marker analysis. This SYBR Green melt-profiling based GLADS approach offers a convenient, low-cost (20-51%) and time-saving alternative for STMS marker detection that can reduce dependence on gel-based detection, and exposure to toxic chemicals

    Capitalism and the Common Man: Peasants and Petty Production in Africa and South Asia

    No full text

    Contributory presentations/posters

    No full text
    corecore