11 research outputs found
Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules.
Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR
Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans
Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4Âżhours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30Âżhours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events
Landscape Ecotoxicology of Coho Salmon Spawner Mortality in Urban Streams
In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America
Bio-deuterated cellulose thin films for enhanced contrast in neutron reflectometry
Novel molecularly smooth, flat and thin films of regenerated bio-deuterated cellulose were produced for enhanced contrast with adsorbed molecules in neutron reflectivity (NR) and for cellulose structure studies. The cellulose films were produced to study both the solid/air interface and the solid/liquid interface. Cellulose films with a wide range of scattering contrast were achieved by combining exchange of 1H for deuterium on hydroxyl groups via water in the liquid phase and via biosynthesis of deuterated bacterial cellulose by Gluconacetobacter xylinus which can deuterate the hydrogens bonded to carbon atoms in cellulose. The deuterated cellulose combined with NR will help to provide new information on the interaction of various (bio)-macromolecules and cellulose. This includes quantifying and visualizing the density profile of polymers and biomolecules adsorbed onto cellulose surface. The potential of this material for IR studies of materials adsorbed to cellulose films is briefly discussed