3 research outputs found

    Validated safety predictions of airway responses to house dust mite in asthma

    No full text
    BACKGROUND: House dust mite (HDM) is the most common aeroallergen causing sensitization in many Western countries and is often used in allergen inhalation challenges. The concentration of inhaled allergen causing an early asthmatic reaction [provocative concentration of inhaled allergen causing a 20% fall of forced expiratory volume in 1 s (FEV(1))(PC(20) allergen)] needs to be predicted for safety reasons to estimate accurately the severity of allergen-induced airway responsiveness. This can be accomplished by using the degree of non-specific airway responsiveness and skin sensitivity to allergen. OBJECTIVE: We derived prediction equations for HDM challenges using PC(20) histamine or PC(20) methacholine and skin sensitivity data obtained from patients with mild to moderate persistent asthma and validated these equations in an independent asthma population. METHODS: PC(20) histamine or PC(20) methacholine, skin sensitivity, and PC(20) allergen were collected retrospectively from 159 asthmatic patients participating in allergen challenge trials. Both the histamine and methacholine groups (n=75 and n=84, respectively), were divided randomly into a reference group to derive new equations to predict PC(20) allergen, and a validation group to test the new equations. RESULTS: Multiple linear regression analysis revealed that PC(20) allergen could be predicted either from PC(20) methacholine only ((10)log PC(20) allergen=-0.902+0.741.(10)log PC(20) methacholine) or from PC(20) histamine and skin sensitivity (SS) ((10)log PC(20) allergen=-0.494+0.231.(10)log SS+0.546.(10)log PC(20) histamine). In the validation study, these new equations accurately predicted PC(20) allergen following inhalation of HDM allergen allowing a safe starting concentration of allergen of three doubling concentrations below predicted PC(20) allergen in all cases. CONCLUSION: The early asthmatic response to inhaled HDM extract is predominantly determined by non-specific airway responsiveness to methacholine or histamine, whereas the influence of the cutaneous sensitivity to HDM appears to be rather limited. Our new equations accurately predict PC(20) allergen and hence are suitable for implementation in HDM inhalation studie

    Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge

    No full text
    BACKGROUND: Eotaxin-1, eotaxin-2, and eotaxin-3 are chemokines involved in the activation and recruitment of eosinophils through activation of their main receptor, CC chemokine receptor 3. The differential roles of these chemokines still remain to be established. It has been suggested that eotaxin-1 is an important mediator in the early phase of allergen-induced recruitment of eosinophils into the airways. Eotaxin-2 and eotaxin-3 might play a role in the subsequent persistence of allergen-induced bronchial eosinophilia. OBJECTIVE: The aim of this study was to determine the expression of eotaxins and eosinophil counts in the bronchial mucosa of subjects with mild asthma after resolution of the late-phase asthmatic response (LAR). METHODS: The expression of eotaxins and eosinophil counts were determined in bronchial biopsy specimens obtained from 10 subjects with mild asthma 48 hours after diluent and allergen challenge by using immunohistochemistry. Positively stained cells were counted in a 125-mum-deep zone of the lamina propria. RESULTS: Eotaxin-2 and eotaxin-3 expression in bronchial mucosa was significantly increased 48 hours after allergen challenge ( P = .001 and P = .013, respectively). At this time point, when marked tissue eosinophilia was still present, these increases were positively correlated with the magnitude of the LAR ( r = 0.72, P = .019 and r = 0.64, P = .046, respectively). Furthermore, eotaxin-2 expression was associated with the number of eosinophils after allergen challenge ( r = 0.72, P = .018). CONCLUSION: Our findings suggest that eotaxin-2 and eotaxin-3 might account for the persistence of bronchial eosinophilia after resolution of the LA
    corecore