40 research outputs found
Induction of interleukin-8 preserves the angiogenic response in HIF-1 alpha-deficient colon cancer cells
authorHypoxia inducible factor-1 (HIF-1) is considered a crucial mediator of the cellular response to hypoxia through its regulation of genes that control angiogenesis^1, ^2, ^3, ^4. It represents an attractive therapeutic target^5, ^6 in colon cancer, one of the few tumor types that shows a clinical response to antiangiogenic therapy^7. But it is unclear whether inhibition of HIF-1 alone is sufficient to block tumor angiogenesis^8, ^9. In HIF-1_α knockdown DLD-1 colon cancer cells (DLD-1^HIF-kd), the hypoxic induction of vascular endothelial growth factor (VEGF) was only partially blocked. Xenografts remained highly vascularized with microvessel densities identical to DLD-1 tumors that had wild-type HIF-1_α (DLD-1^HIF-wt). In addition to the preserved expression of VEGF, the proangiogenic cytokine interleukin (IL)-8 was induced by hypoxia in DLD-1^HIF-kd but not DLD-1^HIF-wt cells. This induction was mediated by the production of hydrogen peroxide and subsequent activation of NF-_KB. Furthermore, the KRAS oncogene, which is commonly mutated in colon cancer, enhanced the hypoxic induction of IL-8. A neutralizing antibody to IL-8 substantially inhibited angiogenesis and tumor growth in DLD-1^HIF-kd but not DLD-1^HIF-wt xenografts, verifying the functional significance of this IL-8 response. Thus, compensatory pathways can be activated to preserve the tumor angiogenic response, and strategies that inhibit HIF-1α may be most effective when IL-8 is simultaneously targeted
Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma
<p>Abstract</p> <p>Background</p> <p>Flat epithelial atypia (FEA) of the breast is characterised by a few layers of mildly atypical luminal epithelial cells. Genetic changes found in ductal carcinoma in situ (DCIS) and invasive ductal breast cancer (IDC) are also found in FEA, albeit at a lower concentration. So far, miRNA expression changes associated with invasive breast cancer, like miR-21, have not been studied in FEA.</p> <p>Methods</p> <p>We performed miRNA in-situ hybridization (ISH) on 15 cases with simultaneous presence of normal breast tissue, FEA and/or DCIS and 17 additional cases with IDC. Expression of the miR-21 targets PDCD4, TM1 and PTEN was investigated by immunohistochemistry.</p> <p>Results</p> <p>Two out of fifteen cases showed positive staining for miR-21 in normal breast ductal epithelium, seven out of fifteen cases were positive in the FEA component and nine out of twelve cases were positive in the DCIS component. A positive staining of miR-21 was observed in 15 of 17 IDC cases. In 12 cases all three components were present in one tissue block and an increase of miR-21 from normal breast to FEA and to DCIS was observed in five cases. In three cases the FEA component was negative, whereas the DCIS component was positive for miR-21. In three other cases, normal, FEA and DCIS components were negative for miR-21 and in the last case all three components were positive. Overall we observed a gradual increase in percentage of miR-21 positive cases from normal, to FEA, DCIS and IDC. Immunohistochemical staining for PTEN revealed no obvious changes in staining intensities in normal, FEA, DCIS and IDC. Cytoplasmic staining of PDCD4 increased from normal to IDC, whereas, the nuclear staining decreased. TM1 staining decreased from positive in normal breast to negative in most DCIS and IDC cases. In FEA, the staining pattern for TM1 was similar to normal breast tissue.</p> <p>Conclusion</p> <p>Upregulation of miR-21 from normal ductal epithelial cells of the breast to FEA, DCIS and IDC parallels morphologically defined carcinogenesis. No clear relation was observed between the staining pattern of miR-21 and its previously reported target genes.</p
Myocardial Hypertrophy Overrides the Angiogenic Response to Hypoxia
Background: Cyanosis and myocardial hypertrophy frequently occur in combination. Hypoxia or cyanosis can be potent inducers of angiogenesis, regulating the expression of hypoxia-inducible factors (HIF), vascular endothelial growth factors (VEGF), and VEGF receptors (VEGFR-1 and 2); in contrast, pressure overload hypertrophy is often associated with impaired pro-angiogenic signaling and decreased myocardial capillary density. We hypothesized that the physiological pro-angiogenic response to cyanosis in the hypertrophied myocardium is blunted through differential HIF and VEGF-associated signaling. Methods and Results: Newborn rabbits underwent aortic banding and, together with sham-operated littermates, were transferred into a hypoxic chamber (FiO2 = 0.12) at 3 weeks of age. Control banded or sham-operated rabbits were housed in normoxia. Systemic cyanosis was confirmed (hematocrit, arterial oxygen saturation, and serum erythropoietin). Myocardial tissue was assayed for low oxygen concentrations using a pimonidazole adduct. At 4 weeks of age, HIF-1α and HIF-2α protein levels, HIF-1α DNA-binding activity, and expression of VEGFR-1, VEGFR-2, and VEGF were determined in hypoxic and normoxic rabbits. At 6 weeks of age, left-ventricular capillary density was assessed by immunohistochemistry. Under normoxia, capillary density was decreased in the banded rabbits compared to non-banded littermates. As expected, non-hypertrophied hearts responded to hypoxia with increased capillary density; however, banded hypoxic rabbits demonstrated no increase in angiogenesis. This blunted pro-angiogenic response to hypoxia in the hypertrophied myocardium was associated with lower HIF-2α and VEGFR-2 levels and increased HIF-1α activity and VEGFR-1 expression. In contrast, non-hypertrophied hearts responded to hypoxia with increased HIF-2α and VEGFR-2 expression with lower VEGFR-1 expression. Conclusion: The participation of HIF-2α and VEGFR-2 appear to be required for hypoxia-stimulated myocardial angiogenesis. In infant rabbit hearts with pressure overload hypertrophy, this pro-angiogenic response to hypoxia is effectively uncoupled, apparently in part due to altered HIF-mediated signaling and VEGFR subtype expression
Induced ablation of skeletal muscle-specific estrogen receptor-alpha in adult female mice increased the susceptibility to develop skeletal muscle inflammation and glucose intolerance under chronic lipid overload
Skeletal muscle-specific ER[alpha] appears to play important roles in regulating skeletal muscle glucose and lipid homeostasis. The overall aim of this dissertation was to determine whether skeletal muscle-specific ER[alpha] is critical for maintaining metabolic function under conditions of lipid overload. To further advance our understanding of skeletal muscle-specific ER[alpha] , this study integrated in vivo and in vitro loss-of-function approaches by generating a novel inducible skeletal muscle-specific ER[alpha] knockout mouse model (ER[alpha]KOism) and by silencing ER[alpha] in human myotubes using an adenovirus-driven ER[alpha]shRNA. The overarching hypothesis is that induced ablation of skeletal muscle-specific ER[alpha] increased the susceptibility to high fat diet (HFD)-induced metabolic dysfunction. ER[alpha]KOism mice exhibited similar adiposity after acute and chronic HFD treatments compared to WT mice , for both females and males. Indirect calorimetry revealed that energy expenditure was similar between female WT and ER[alpha]KOism mice , even when exposed to acute and chronic HFD treatments. Male ER[alpha]KOism mice exhibited minimally greater energy expenditure after chronic HFD treatment compared to male WT mice , regardless of diet. Spontaneous cage activity was similar between diet-matched WT and ER[alpha]KOism mice for both sexes , even after acute and chronic HFD treatment. Analysis of glucose dynamics revealed that female ER[alpha]KOism-HFD exhibited greater glucose intolerance than WT-HFD after chronic HFD treatment. Ex vivo skeletal muscle glucose uptake was similar between female WT and ER[alpha]KOism mice , although GLUT4 protein content was lower in skeletal muscle of female ER[alpha]KOism , regardless of diet. Markers of pro-inflammation were also elevated in female ER[alpha]KOism mice , regardless of diet. Analysis of mitochondrial respiratory capacity , oxidative phosphorylation efficiency , and H2O2 emission potential in permeabilized skeletal muscle fibers , revealed that skeletal muscle mitochondrial function was similar between WT and ER[alpha]KOism for both sexes. In human skeletal myotubes sourced from healthy and obese-insulin resistant adult women , ATP production rate was minimally lower in myotubes transduced with ER[alpha]shRNA compared to scrambled-shRNA (control) myotubes. Overall , the data suggest that skeletal muscle ER[alpha] is critical for maintaining glucose tolerance in females on a chronic HFD and regulating skeletal muscle inflammation