2 research outputs found

    Functional analysis of structural variants in single cells using Strand-seq

    Full text link
    Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations

    MSC.sensor: Capturing cancer cell interactions with stroma for functional profiling

    Get PDF
    Mesenchymal stromal cells (MSCs) contribute to the microenvironment regulating normal and malignant hematopoiesis, and thus may support subpopulations of cancer cells to escape therapeutic pressure. Here, we engineered bone marrow MSCs to express a synthetic CD19-sensor receptor to detect and display interacting primary CD19+ leukemia cells in coculture. This implementation provides a versatile platform facilitating ex vivo drug response profiling of primary CD19+ leukemia cells in coculture with high-sensitivity and scalability
    corecore