16 research outputs found

    On the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layers

    Get PDF
    Fan-out wafer-level packaging (FOWLP) is an interesting platform for Microelectromechanical systems (MEMS) sensor packaging. Employing FOWLP for MEMS sensor packaging has some unique challenges, while some originate merely from the fabrication of redistribution layers (RDL). For instance, it is crucial to protect the delicate structures and fragile membranes during RDL formation. Thus, additive manufacturing (AM) for RDL formation seems to be an auspicious approach, as those challenges are conquered by principle. In this study, by exploiting the benefits of AM, RDLs for fan-out packaging of capacitive micromachined ultrasound transducers (CMUT) were realized via drop-on-demand inkjet printing technology. The long-term reliability of the printed tracks was assessed via temperature cycling tests. The effects of multilayering and implementation of an insulating ramp on the reliability of the conductive tracks were identified. Packaging-induced stresses on CMUT dies were further investigated via laser-Doppler vibrometry (LDV) measurements and the corresponding resonance frequency shift. Conclusively, the bottlenecks of the inkjet-printed RDLs for FOWLP were discussed in detail.EC/H2020/737487/EU/(Ultra)Sound Interfaces and Low Energy iNtegrated SEnsors/SILENS

    Characterization of narrowband microelectromechanical systems based detectors for integrated mid-infrared gas sensing

    No full text
    The underlying project of this work is performed in cooperation with Infineon Technologies Austria AG and the Johannes Kepler University of Linz. Work is done on the development, characterization and optimization of an optical carbon dioxide sensor, based on mid infrared absorption by the gaseous CO2 molecules. The construction of such a sensing system requires the integration of a mid-IR sensitive detector, attached to a waveguide, a radiation source and a wavelength selective filter structure. In this master thesis the experimental characterization of three different detectors will be presented. In addition to a simple bolometer and a P-N diode, a newer concept, a so-called vertical cavity enhanced detector is examined more closely. A big advantage of this detector is that it has an directly integrated wavelength selective filter, in the form of a Bragg mirror, tailored for 4.26 microns, according to the absorption spectrum of CO2. At the end it is demonstrated that the vertical cavity enhanced detector outperforms the other two and the cavity induces an increase in responsivity by a factor 7.1. As such this design can be easily optimized and integrated to specifically enhance the detector response around the design wavelength.8

    Evaluation of the Sheet Resistance of Inkjet-Printed Ag-Layers on Flexible, Uncoated Paper Substrates Using Van-der-Pauw’s Method

    No full text
    With the growing significance of printed sensors on the electronics market, new demands on quality and reproducibility have arisen. While most printing processes on standard substrates (e.g., Polyethylene terephthalate (PET)) are well-defined, the printing on substrates with rather porous, fibrous and rough surfaces (e.g., uncoated paper) contains new challenges. Especially in the case of inkjet-printing and other deposition techniques that require low-viscous nanoparticle inks the solvents and deposition materials might be absorbed, inhibiting the formation of homogeneous conductive layers. As part of this work, the sheet resistance of sintered inkjet-printed conductive silver (Ag-) nanoparticle cross structures on two different, commercially available, uncoated paper substrates using Van-der-Pauw’s method is evaluated. The results are compared to the conductivity of well-studied, white heat stabilised and treated PET foil. While the sheet resistance on PET substrate is highly reproducible and the variations are solely process-dependent, the sheet resistance on uncoated paper depends more on the substrate properties themselves. The results indicate that the achievable conductivity as well as the reproducibility decrease with increasing substrate porosity and fibrousness

    Low-Cost Inkjet-Printed Temperature Sensors on Paper Substrate for the Integration into Natural Fiber-Reinforced Lightweight Components

    No full text
    In a unique approach to develop a “green” solution for in-situ monitoring, low-cost inkjet-printed temperature sensors on paper substrate were fully integrated into natural fiber-reinforced lightweight components for which structural health monitoring is becoming increasingly important. The results showed that the sensors remained functional after the vacuum infusion process; furthermore, the integration of the sensors improved the mechanical integrity and stability of the lightweight parts, as demonstrated by tensile testing. To verify the qualification of the printed sensors for the target application, the samples were exposed to varying temperature and humidity conditions inside of a climate chamber. The sensors showed linear temperature dependence in the temperature range of interest (−20 to 60 °C) with a TCR ranging from 1.576 × 10−3 K−1 to 1.713 × 10−3 K−1. Furthermore, the results from the tests in humid environments indicated that the used paper-based sensors could be made almost insensitive to changes in ambient humidity by embedding them into fiber-reinforced lightweight materials. This study demonstrates the feasibility of fully integrating paper-based printed sensors into lightweight components, which paves the way towards integration of other highly relevant sensing devices, such as strain and humidity sensors, for structural health monitoring of smart, sustainable, and environmentally compatible lightweight composite materials

    Evaluation of Standard Electrical Bonding Strategies for the Hybrid Integration of Inkjet-Printed Electronics

    No full text
    Different conductive bonding strategies for the hybrid integration of flexible, inkjet-printed electronics are investigated. The focus of the present work lies on providing a practical guide comprising standard techniques that are inexpensive, easily implementable and frequently used. A sample set consisting of identical conductive test structures on different paper and plastic substrates was prepared using silver (Ag) nanoparticle ink. The sintered specimens were electrically contacted using soldering, adhesive bonding and crimping. Electrical and mechanical characterization before and after exposing the samples to harsh environmental conditions was performed to evaluate the reliability of the bonding methods. Resistance measurements were done before and after connecting the specimens. Afterwards, 85 °C/85% damp-heat tests and tensile tests were applied. Adhesive bonding appears to be the most suitable and versatile method, as it shows adequate stability on all specimen substrates, especially after exposure to a 85 °C/85% damp-heat test. During exposure to mechanical tensile testing, adhesive bonding proved to be the most stable, and forces up to 12 N could be exerted until breakage of the connection. As a drawback, adhesive bonding showed the highest increase in electrical resistance among the different bonding strategies

    Characterization of a Vertical-Cavity Enhanced Detector for Narrowband Detection in the Mid-Infrared

    No full text
    In this work we present the experimental characterization of a vertical-cavity enhanced resonant detector (VERD) optimized for detection in the mid-infrared. We demonstrate that the VERD shows a 7.1 times higher absorption and responsivity at 4.26 ”m compared to a bare metal absorber. As such this design can be easily optimized and integrated to specifically enhance the absorption around the design wavelength

    Printed Electronics Technologies for Additive Manufacturing of Hybrid Electronic Sensor Systems

    No full text
    Abstract Requirements for the miniaturization of electronics are constantly increasing as more and more functions are aimed to be integrated into a single device. At the same time, there are strong demands for low‐cost manufacturing, environmental compatibility, rapid prototyping, and small‐scale productions due to fierce competition, policies, rapid technical progress, and short innovation times. Altogether, those challenges cannot be sufficiently addressed by simply using either printed or silicon electronics. Instead, the synergies from combining those two technologies into so‐called hybrid electronics create novel opportunities for advanced capabilities and new areas of applications. In the first part of this review, printing and patterning technologies are presented with potential compatibility with conventional electronics manufacturing techniques. They can be utilized for the fabrication of highly complex structures. Nonetheless, up‐scalability, integration, and adaptation for industrial fabrication remain challenging due to technically limiting factors. Consequently, a special focus is placed on the up‐scalability, availability of commercial printing, and manufacturing machines, as well as processing challenges for high‐volume industrial applications. The second part of this review further provides an overview of exciting and innovative application possibilities of printed electronics, emphasizing sensor applications, as well as additively manufactured integrated circuits

    The role of skill level and motor task characteristics on the effectiveness of robotic training: first results

    No full text
    There is an initial body of work that compared the effectiveness of robotic strategies that amplify or reduce movement errors on motor learning. However, these comparative studies still show inconclusive results, probably because they searched for the robotic strategy that enhances learning, independently of the subjects' skill level and the specific characteristics of the task to be learned. Some theories have suggested that optimal learning is achieved when the difficulty of the task is appropriate for the individual subject's level of expertise. Additionally, the specific characteristics of the task to be learned (e.g. the task's timing component) might play an important role on the effectiveness of different training strategies. In this paper, we overview the research performed in the Sensory-Motor System laboratory at ETH Zurich that aims to find the robotic strategies that could enhance motor learning based on the participants' skill level and specific characteristics of the task to be learned. We performed several motor learning experiments and found that haptic guidance seems to be particularly helpful for initially less skilled subjects, while error amplification is more beneficial for skilled subjects. The rhythmicity and duration of the movement also seem to be key factors to consider when selecting the robotic training strategies that enhance motor learning. The impacts of these training strategies on neurological patients need further investigations

    Sustainable Multifunctional Biface Sensor Tag

    No full text
    Abstract In this article, a sustainable, multifunctional, low‐cost, wireless sensor tag is presented. The sensor tag combines three different environmental sensors in one single platform for the dedicated purpose of wireless structural health monitoring of a variety of applications. However, the adaptive design allows the integration of different sensors depending on the specific sensing task. The material consumption is minimized by double‐sided printing, resulting in compact, resource‐efficient sensor solutions. On one side, the tag is equipped with a printed antenna, a fully passive silicon‐based near‐field communication chip and a carbon‐based strain sensor, while the environmental sensors for humidity and temperature are printed on the other side. Due to its low cost, the usage of environmentally friendly materials and the absence of a battery, the biface sensor tag is a milestone in the field of wireless, sustainable electronics for ubiquitous sensing applications. The fabrication itself comprises a series of processes with a focus on efficient additive manufacturing. The characterization of the three sensors shows sensitivity values and characteristics comparable to those found in literature and industrially manufactured sensors. The utilization of a smartphone for reading out the sensor signals further emphasizes the sustainable approach of this sensor system

    Sensitivity Comparison of Integrated Mid-Infrared Silicon-Based Photonic Detectors

    No full text
    Integrated silicon photonics in the mid-infrared is a promising platform for cheap and miniaturized chemical sensors, including gas and/or liquid sensors for environmental monitoring and the consumer electronics market. One major challenge in integrated photonics is the design of an integrated detector sensitive enough to detect minimal changes in light intensity resulting from, for example, the absorption by the analyte. Further complexity arises from the need to fabricate such detectors at a high throughput with high requirements on fabrication tolerances. Here we analyze and compare the sensitivity of three different chip-integrated detectors at a wavelength of 4.17 ”m, namely a resistance temperature detector (RTD), a diode and a vertical-cavity enhanced resonant detector (VERD)
    corecore