6 research outputs found
Magnetic suppression of perceptual accuracy is not reduced in episodic migraine without aura
Background: Altered cortical excitability is thought to be part of migraine pathophysiology. Reduced magnetic suppression of perceptual accuracy (MSPA) has been found in episodic migraine with aura and in chronic migraine, and has been interpreted as reduced inhibition of the occipital cortex in these migraine subtypes. Results are less clear for episodic migraine without aura. In the present study we compared MSPA between 24 healthy controls and 22 interictally measured episodic migraine patients without aura. In addition, we investigated test-retest reliability in 33 subjects (24 controls, 9 migraine). Findings: Visual accuracy was assessed by letter recognition and modulated by transcranial magnetic stimulation delivered to the occipital cortex at different intervals to the letter presentation (40, 100 and 190 ms). The results confirm suppression of visual accuracy at the 100 ms interval (p < 0.001), but there were no significant group differences (percentage of correctly recognized letters, control: 36.1 +/- 36.2; migraine: 44.0 +/- 32.3, p = 0.44). Controls and migraine patients were pooled for assessment of test-retest reliability (n = 33). Levels of suppression at 100 ms were similar at test (percentage of correctly recognized letters: 42.3 +/- 32.6) and retest (41.9 +/- 33.8, p = 0.90) and test-retest correlations were good (r = 0.82, p < 0.001). Conclusions: The results demonstrate that occipital cortex inhibition as assessed with MSPA is not reduced in episodic migraine without aura. This suggests a larger role of occipital cortex excitability in episodic migraine with aura and in chronic migraine compared to episodic migraine without aura. Test-retest reliability of MSPA was good
Test-retest reliability of visual-evoked potential habituation
Objective Habituation of visual-evoked potentials (VEPs) is typically described as deficient interictally in migraine patients, supposedly indicating altered cortical excitability. Use of this parameter for monitoring changes over time, e.g. under treatment, requires demonstration of test-retest reliability. Methods VEPs were recorded interictally in 41 episodic migraine patients and 40 controls. N75-P100 amplitudes were measured over six consecutive blocks of 75 VEPs each. Amplitude regression slopes and block ratios were used to quantify VEP habituation. Test-retest reliability was assessed over 15 minutes and two to three weeks. Results Controls showed significantly more negative VEP habituation slopes than migraine patients (-0.210.40 vs. 0.04 +/- 0.46 mu V/block, p<0.05). Results were similar for block ratios, though, in the migraine group, VEP habituation significantly increased from test to two- to three-week retest (p<0.05). In addition, VEP habituation test-retest correlations were mostly poor both in migraine patients and controls (intraclass correlation coefficients, 15 minutes: -0.13 to 0.30, two to three weeks: 0.07 to 0.59). Conclusions Deficient VEP habituation in migraine was confirmed. However, the test-retest reliability of VEP habituation was rather weak. Therefore, we suggest that VEP habituation should be used for evaluation of cortical excitability under treatment only at the group level and only when a control group with sham treatment is included
Test-retest reliability of visual-evoked potential habituation
Objective Habituation of visual-evoked potentials (VEPs) is typically described as deficient interictally in migraine patients, supposedly indicating altered cortical excitability. Use of this parameter for monitoring changes over time, e.g. under treatment, requires demonstration of test-retest reliability. Methods VEPs were recorded interictally in 41 episodic migraine patients and 40 controls. N75-P100 amplitudes were measured over six consecutive blocks of 75 VEPs each. Amplitude regression slopes and block ratios were used to quantify VEP habituation. Test-retest reliability was assessed over 15 minutes and two to three weeks. Results Controls showed significantly more negative VEP habituation slopes than migraine patients (-0.210.40 vs. 0.04 +/- 0.46 mu V/block, p<0.05). Results were similar for block ratios, though, in the migraine group, VEP habituation significantly increased from test to two- to three-week retest (p<0.05). In addition, VEP habituation test-retest correlations were mostly poor both in migraine patients and controls (intraclass correlation coefficients, 15 minutes: -0.13 to 0.30, two to three weeks: 0.07 to 0.59). Conclusions Deficient VEP habituation in migraine was confirmed. However, the test-retest reliability of VEP habituation was rather weak. Therefore, we suggest that VEP habituation should be used for evaluation of cortical excitability under treatment only at the group level and only when a control group with sham treatment is included
Responsiveness of the autonomic nervous system during paced breathing and mental stress in migraine patients
Background
Migraine is a stress-related disorder, suggesting that there may be sympathetic hyperactivity in migraine patients. However, there are contradictory results concerning general sympathetic activation in migraine patients. To shed more light on the involvement of the autonomic nervous system (ANS) in migraine pathophysiology, we investigated cardiac and cardiovascular reactions during vagal (paced breathing) and sympathetic activation (mental stress test).
Methods
Heart rate variability parameters and skin conductance responses were recorded interictally in 22 episodic migraine patients without aura and 25 matched controls during two different test conditions. The paced breathing test consisted of a five-minute baseline, followed by two minutes of paced breathing (6 breathing cycles per minute) and a five-minute recovery phase. The mental stress test consisted of a five-minute baseline, followed by one minute of stress anticipation, three and a half minutes of mental stress and a five-minute recovery phase. Furthermore we measured blood pressure and heart rate once daily over 2 weeks. Subjects rated their individual current stress level and their stress level during paced breathing and during the mental stress test.
Results
There were no significant differences between migraine patients and controls in any of the heart rate variability parameters in either time domain or frequency domain analysis. However, all parameters showed a non-significant tendency for larger sympathetic activation in migraine patients. Also, no significant differences could be observed in skin conductance responses and average blood pressure. Only heart rates during the 2-week period and stress ratings showed significantly higher values in migraine patients compared to controls.
Conclusions
Generally there were no significant differences between migraine patients and controls concerning the measured autonomic parameters. There was a slight but not significant tendency in the migraine patients to react with less vagal and more sympathetic activation in all these tests, indicating a slightly changed set point of the autonomic system. Heart rate variability and blood pressure in migraine patients should be investigated for longer periods and during more demanding sympathetic activation
Magnetic Suppression of Perceptual Accuracy Is Not Reduced in Visual Snow Syndrome.
Objective: Patients with visual snow syndrome (VSS) suffer from continuous ("TV snow-like") visual disturbance of unknown pathoetiology. In VSS, changes in cortical excitability in the primary visual cortex and the visual association cortex are discussed, with recent imaging studies tending to point to higher-order visual areas. Migraine, especially migraine with aura, is a common comorbidity. In chronic migraine and episodic migraine with aura but not in episodic migraine without aura, a reduced magnetic suppression of perceptual accuracy (MSPA) reflects a probably reduced inhibition of the primary visual cortex. Here we investigated the inhibition of the primary visual cortex using MSPA in patients with VSS, comparing that with MSPA in controls matched for episodic migraine. Methods: Seventeen patients with VSS were compared to 17 age- and migraine-matched controls. Visual accuracy was assessed by letter recognition and modulated by transcranial magnetic stimulation delivered to the occipital cortex at different intervals with respect to the letter presentation (40, 100, and 190 ms). Results: Suppression of visual accuracy at the 100-ms interval was present without significant differences between VSS patients and age- and migraine-matched controls (percentage of correctly recognized trigrams, control: 46.4 ± 34.3; VSS: 52.5 ± 25.4, p = 0.56). Conclusions: In contrast to migraine with aura, occipital cortex inhibition, as assessed with MSPA, may not be affected in VSS