36 research outputs found

    Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives

    Full text link
    Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/1/ele13402-sup-0001-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/2/ele13402_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/3/ele13402-sup-0007-TableS7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/4/ele13402-sup-0003-TableS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/5/ele13402-sup-0005-TableS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/6/ele13402.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/7/ele13402-sup-0006-TableS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/8/ele13402-sup-0002-TableS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/9/ele13402-sup-0004-TableS4.pd

    Impedance-engineered low power MZM / driver assembly for CFP4-size pluggable long haul and metro transceiver

    No full text
    A differential impedance-engineered 32 Gbit/s SiGe driver co-designed with an InP-based MZ-Modulator is demonstrated, showing record low 185 mW power consumption. The small footprint and low power is targeting towards CFP4-sized coherent transceivers. Results on IQ-Modulators will be presented

    CL-TWE Mach-Zehnder modulators on InP: Central elements in transmitter PICs of increasing complexity

    No full text
    The development of advanced InP-based transmitter PICs of increasing complexity and integrating periodically capacitive-loaded (CL) Travelling Wave Electrode (TWE) Mach-Zehnder modulators is reported and discussed in examples
    corecore