5 research outputs found

    Process Development for Batch Production of Micro-Milling Tools Made of Silicon Carbide by Means of the Dry Etching Process

    Get PDF
    Downsized and complex micro-machining structures have to meet quality requirements concerning geometry and convince through increasing functionality. The development and use of cutting tools in the sub-millimeter range can meet these demands and contribute to the production of intelligent components in biomedical technology, optics or electronics. This article addresses the development of double-edged micro-cutters, which consist of a two-part system of cutter head and shaft. The cutting diameters are between 50 and 200 μm. The silicon carbide cutting heads are manufactured from the solid material using microsystem technology. The substrate used can be structured uniformly via photolithography, which means that 5200 homogeneous micro-milling heads can be produced simultaneously. This novel batch approach represents a contrast to conventionally manufactured micro-milling cutters. The imprint is taken by means of reactive ion etching using a mask made of electroplated nickel. Within this dry etching process, characteristic values such as the etch rate and flank angle of the structures are critical and will be compared in a parameter analysis. At optimal parameters, an anisotropy factor of 0.8 and an etching rate of 0.34 µm/min of the silicon carbide are generated. Finally, the milling heads are diced and joined. In the final machining tests, the functionality is investigated and any signs of wear are evaluated. A tool life of 1500 mm in various materials could be achieved. This and the milling quality achieved are in the range of conventional micro-milling cutters, which gives a positive outlook for further development

    Young’s Modulus and Residual Stresses of Oxide-Free Wire Arc Sprayed Copper Coatings

    Get PDF
    Conventional thermal spraying processes are almost exclusively carried out in an air atmosphere, resulting in the oxidation of the particle surfaces and interfaces within the coating and between the substrate and coating. Furthermore, the initial process of surface activation conventionally takes place in an air atmosphere, preventing an oxide-free interfacial transition. Consequently, the application of spraying materials with high oxygen affinity represents a major challenge. To overcome these issues, the present study utilized silane-doped inert gases to create an environment in which the oxygen concentration was equivalent to the residual oxygen content in an extreme high vacuum. By transferring the corundum blasting and coating process (wire arc spraying) to this environment, materials with a high oxygen affinity can be applied without oxidation occurring. For industrial use, this is an interesting prospect, e.g., for repair coatings, as the homogeneity of the composite is improved by a non-oxidized coating. Using the example of arc-sprayed copper coatings, the microstructure and mechanical properties of the coatings were analysed. The results showed that the oxide-free, wire arc sprayed copper coatings exhibited an improved wetting behaviour resulting in a significant reduction of the coating porosity. Moreover, the improved wetting behaviour and led to an increase in the bonding rate and apparent Young’s modulus. Contrary to expectations, the residual stresses decrease although relaxation mechanisms should be inhibited, and possible reasons for this are discussed in the paper

    Characterization of the tribologically relevant cover layers formed on copper in oxygen and oxygen-free conditions

    Get PDF
    Engineering in vacuum or under a protective atmosphere permits the production of materials, wherever the absence of oxygen is an essential demand for a successful processing. However, very few studies have provided quantitative evidence of the effect of oxidized surfaces to tribological properties. In the current study on 99.99% pure copper, it is revealed that tribo-oxidation and the resulting increased abrasive wear can be suppressed by processing in an extreme high vacuum (XHV) adequate environment. The XHV adequate atmosphere was realized by using a silane-doped shielding gas (1.5 vol% SiH4 in argon). To analyse the influence of the ambient atmosphere on the tribological and mechanical properties, a ball—disk tribometer and a nanoindenter were used in air, argon, and silane-doped argon atmosphere for temperatures up to 800 °C. Resistance measurements of the resulting coatings were carried out. To characterize the microstructures and the chemical compositions of the samples, the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were used. The investigations have revealed a formation of η-Cu3Si in silane-doped atmosphere at 300 °C, as well as various intermediate stages of copper silicides. At temperatures above 300 °C, the formation of γ-Cu5Si were detected. The formation was linked to an increase in hardness from 1.95 to 5.44 GPa, while the Young’s modulus increased by 46% to 178 GPa, with the significant reduction of the wear volume by a factor of 4.5 and the suppression of further oxidation and susceptibility of chemical wear. In addition, the relevant diffusion processes were identified using molecular dynamics (MD) simulations. [Figure not available: see fulltext.]

    Enhanced findability and reusability of Engineering Data by Contextual Metadata

    Get PDF
    Complex research problems are increasingly addressed by interdisciplinary, collaborate research projects generating large amounts of heterogeneous amounts of data. The overarching processing, analysis and availability of data are critical success factors for these research efforts. Data repositories enable long term availability of such data for the scientific community. The findability and therefore reusability strongly builds on comprehensive annotations of datasets stored in repositories. Often generic metadata schema are used to annotate data. In this publication we describe the implementation of discipline specific metadata into a data repository to provide more contextual information about data. To avoid extra workload for researchers to provide such metadata a workflow with standardised data templates for automated metadata extraction during the ingest process has been developed. The enriched metadata are in the following used in the development of two repository plugins for data comparison and data visualisation. The added values of discipline-specific annotations and derived search features to support matching and reusable data is then demonstrated by use cases of two Collaborative Research Centres (CRC 1368 and CRC 1153)

    Characterization of the tribologically relevant cover layers formed on copper in oxygen and oxygen-free conditions

    No full text
    Abstract Engineering in vacuum or under a protective atmosphere permits the production of materials, wherever the absence of oxygen is an essential demand for a successful processing. However, very few studies have provided quantitative evidence of the effect of oxidized surfaces to tribological properties. In the current study on 99.99% pure copper, it is revealed that tribo-oxidation and the resulting increased abrasive wear can be suppressed by processing in an extreme high vacuum (XHV) adequate environment. The XHV adequate atmosphere was realized by using a silane-doped shielding gas (1.5 vol% SiH4 in argon). To analyse the influence of the ambient atmosphere on the tribological and mechanical properties, a ball—disk tribometer and a nanoindenter were used in air, argon, and silane-doped argon atmosphere for temperatures up to 800 °C. Resistance measurements of the resulting coatings were carried out. To characterize the microstructures and the chemical compositions of the samples, the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were used. The investigations have revealed a formation of η-Cu3Si in silane-doped atmosphere at 300 °C, as well as various intermediate stages of copper silicides. At temperatures above 300 °C, the formation of γ-Cu5Si were detected. The formation was linked to an increase in hardness from 1.95 to 5.44 GPa, while the Young’s modulus increased by 46% to 178 GPa, with the significant reduction of the wear volume by a factor of 4.5 and the suppression of further oxidation and susceptibility of chemical wear. In addition, the relevant diffusion processes were identified using molecular dynamics (MD) simulations
    corecore