93 research outputs found

    Estimation of Thickness and Speed of Sound for Transverse Cortical Bone Imaging Using Phase Aberration Correction Methods: An In Silico and Ex Vivo Validation Study

    Get PDF
    Delay-and-sum (DAS) beamforming of backscattered echoes is used for conventional ultrasound imaging. Although DAS beamforming is well suited for imaging in soft tissues, refraction, scattering, and absorption, porous mineralized tissues cause phase aberrations of reflected echoes and subsequent image degradation. The recently developed refraction corrected multi-focus technique uses subsequent focusing of waves at variable depths, the tracking of travel times of waves reflected from outer and inner cortical bone interfaces, the estimation of the shift needed to focus from one interface to another to determine cortical thickness (Ct.Th), and the speed of sound propagating in a radial bone direction (Ct.nu(11)). The method was validated previously in silico and ex vivo on plate shaped samples. The aim of this study was to correct phase aberration caused by bone geometry (i.e., curvature and tilt with respect to the transducer array) and intracortical pores for the multi-focus approach. The phase aberration correction methods are based on time delay estimation via bone geometry differences to flat bone plates and via the autocorrelation and cross correlation of the reflected ultrasound waves from the endosteal bone interface. We evaluate the multi-focus approach by incorporating the phase aberration correction methods by numerical simulation and one experiment on a human tibia bone, and analyze the precision and accuracy of measuring Ct.Th and Ct.nu(11). Site-matched reference values of the cortical thickness of the human tibia bone were obtained from high-resolution peripheral computed tomography. The phase aberration correction methods resulted in a more precise (coefficient of variation of 5.7%) and accurate (root mean square error of 6.3%) estimation of Ct.Th, and a more precise (9.8%) and accurate (3.4%) Ct.nu(11) estimation, than without any phase aberration correction. The developed multi-focus method including phase aberration corrections provides local estimations of both cortical thickness and sound velocity and is proposed as a biomarker of cortical bone quality with high clinical potential for the prevention of osteoporotic fractures

    Sur le volume élémentaire représentatif à considérer pour la modélisation de l'os compact

    Get PDF
    L'os cortical est essentiellement biphasique (pores+matrice). Pour le calcul de propriĂ©tĂ©s effectives, il faut choisir un volume reprĂ©sentatif (VER). Ce choix est dĂ©licat car 1) le tissu est hĂ©tĂ©rogĂšne Ă  plusieurs Ă©chelles (i.e. zones plus ou moins poreuses en moyenne) ; 2) la couche corticale peut ĂȘtre trĂšs fine. Nous montrerons que le choix d’un VER de taille millimĂ©trique permet de calculer de maniĂšre satisfaisante des propriĂ©tĂ©s effectives, dans un sens que l'on prĂ©cisera

    Pulsed ultrasound for bone regeneration - outcomes and hurdles in the clinical application: a systematic review

    Get PDF
    Impaired bone-fracture healing is associated with long-term musculoskeletal disability, pain and psychological distress. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive and side-effect-free treatment option for fresh, delayed- and non-union bone fractures, which has been used in patients since the early 1990s. Several clinical studies, however, have questioned the usefulness of the LIPUS treatment for the regeneration of long bones, including those with a compromised healing. This systematic review addresses the hurdles that the clinical application of LIPUS encounters. Low patient compliance might disguise the effects of the LIPUS therapy, as observed in several studies. Furthermore, large discrepancies in results, showing profound LIPUS effects in regeneration of small-animal bones in comparison to the clinical studies, could be caused by the suboptimal parameters of the clinical set-up. This raises the question of whether the so-called "acoustic dose" requires a thorough characterisation to reveal the mechanisms of the therapy. The adequate definition of the acoustic dose is especially important in the elderly population and patients with underlying medical conditions, where distinct biological signatures lead to a delayed regeneration. Non-industry-funded, randomised, double-blind, placebo-controlled clinical trials of the LIPUS application alone and as an adjuvant treatment for bones with complicated healing, where consistent control of patient compliance is ensured, are required

    BMD-based assessment of local porosity in human femoral cortical bone

    Get PDF
    Cortical pores are determinants of the elastic properties and of the ultimate strength of bone tissue. An increase of the overall cortical porosity (Ct.Po) as well as the local coalescence of large pores cause an impairment of the mechanical competence of bone Therefore, Ct Po represents a relevant target for identifying patients with high fracture risk. However, given their small size, the in vivo imaging of cortical pores remains challenging. The advent of modern high-resolution peripheral quantitative computed tomography (HR-pQCT) triggered new methods for the clinical assessment of Ct Po at the peripheral skeleton, either by pore segmentation or by exploiting local bone mineral density (BMD) In this work, we compared BMD-based Ct.Po estimates with highresolution reference values measured by scanning acoustic microscopy. A calibration rule to estimate local Ct.Po from BMD as assessed by HR-pQCT was derived experimentally. Within areas of interest smaller than 0.5 mm(2), our model was able to estimate the local Ct.Po with an error of 3.4%. The incorporation of the BMD mhomogeneity and of one parameter from the BMD distribution of the entire scan volume led to a relative reduction of the estimate error of 30%, if compared to an estimate based on the average BMD. When applied to the assessment of Ct.Po within entire cortical bone cross-sections, the proposed BMD-based method had better accuracy than measurements performed with a conventional threshold-based approach.</p

    Interconnectivity Explains High Canalicular Network Robustness between Neighboring Osteocyte Lacunae in Human Bone

    Get PDF
    Osteocytes are the most frequent bone cells connected with each other through cell processes within tiny tubular-shaped canaliculi. The so-called osteocyte lacunar-canalicular network (LCN) plays a crucial role in bone remodeling and mineral homeostasis. Given the critical nature of these functions, it is herein hypothesized that the LCN must be structurally "overengineered" to provide network resilience. This hypothesis is tested by characterizing canalicular networks in human bone at the fundamental "building-block" level of LCN formed by two adjacent osteocytes. As the hierarchical micro- and macroscale structure of bone is influenced by anatomical location, subjected loads, and growth rate, three distinct tissue types are studied. These include femur, jaw, and heterotopic ossification (HO), a rapidly forming mineralized tissue found in soft tissue compartments following severe trauma. It is found that the LCNs at the fundamental level are composed of hundreds of canalicular segments but of only few separated groups of linked canaliculi (canalicular clusters), resulting in a strongly pronounced interconnectivity. Fluid permeability simulations on intact and artificially altered LCN suggest that the function of the LCN is not only to optimize rapid and efficient access to bone mineral, but also to maintain high permeability when inevitable local interruption of canaliculi occurs.Peer reviewe

    Decreased Compressional Sound Velocity Is an Indicator for Compromised Bone Stiffness in X-Linked Hypophosphatemic Rickets (XLH)

    Get PDF
    Objectives: To assess the diagnostic potential of bidirectional axial transmission (BDAT) ultrasound, and high-resolution peripheral quantitative computed tomography (HR-pQCT) in X-linked hypophosphatemia (XLH, OMIM #307800), a rare genetic disorder of phosphate metabolism caused by mutations in the PHEX gene. Methods: BDAT bone ultrasound was performed at the non-dominant distal radius (33% relative to distal head) and the central left tibia (50%) in eight XLH patients aged between 4.2 and 20.8 years and compared to twenty-nine healthy controls aged between 5.8 and 22.4 years. In eighteen controls, only radius measurements were performed. Four patients and four controls opted to participate in HR-pQCT scanning of the ultradistal radius and tibia. Results: Bone ultrasound was feasible in patients and controls as young as 4 years of age. The velocity of the first arriving signal (ΜFAS) in BDAT ultrasound was significantly lower in XLH patients compared to healthy controls: In the radius, mean ΜFAS of XLH patients and controls was 3599 ± 106 and 3866 ± 142 m/s, respectively (-6.9%; p < 0.001). In the tibia, it was 3578 ± 129 and 3762 ± 124 m/s, respectively (-4.9%; p = 0.006). HR-pQCT showed a higher trabecular thickness in the tibia of XLH patients (+16.7%; p = 0.021). Conclusions: Quantitative bone ultrasound revealed significant differences in cortical bone quality of young XLH patients as compared to controls. Regular monitoring of XLH patients by a radiation-free technology such as BDAT might provide valuable information on bone quality and contribute to the optimization of treatment. Further studies are needed to establish this affordable and time efficient method in the XLH patients

    Transplantation of Chemically Processed Decellularized Meniscal Allografts: A Pilot Sheep Study

    Get PDF
    Objective The aim of this study was to evaluate the chondroprotective effect of chemically decellularized meniscal allografts transplanted into the knee joints of adult merino sheep. Methods Lateral sheep meniscal allografts were chemically processed by a multistep method to yield acellular, sterile grafts. The grafts were transplanted into the knee joints of sheep that were treated by lateral meniscectomy. Joints treated by meniscectomy only and untreated joints served as controls. The joints were analyzed morphologically 6 and 26 weeks after surgery by the macroscopical and histological OARSI (Osteoarthritis Research Society International) score. Additionally, the meniscal grafts were biomechanically tested by cyclic indentation. Results Lateral meniscectomy was associated with significant degenerative changes of the articular cartilage of the lateral joint compartment. Transplanted lateral meniscal allografts retained their integrity during the observation period without inducing significant synovitis or foreign body reactions. Cellular repopulation of the grafts was only present on the surface and the periphery of the lateral meniscus, but was still completely lacking in the center of the grafts at week 26. Transplantation of processed meniscal allografts could not prevent degenerative changes of the articular cartilage in the lateral joint compartment. Compared with healthy menisci, the processed grafts were characterized by a significantly reduced dynamic modulus, which did not improve during the observation period of 26 weeks in vivo. Conclusion Chemically decellularized meniscal allografts proved their biocompatibility and durability without inducing immunogenic reactions. However, insufficient recellularization and inferior stiffness of the grafts hampered chondroprotective effects on the articular cartilage

    Interconnectivity explains high canalicular network robustness between neighboring osteocyte lacunae in human bone

    Get PDF
    Osteocytes are the most frequent bone cells connected with each other through cell processes within tiny tubular-shaped canaliculi. The so-called osteocyte lacunar-canalicular network (LCN) plays a crucial role in bone remodeling and mineral homeostasis. Given the critical nature of these functions, it is herein hypothesized that the LCN must be structurally “overengineered” to provide network resilience. This hypothesis is tested by characterizing canalicular networks in human bone at the fundamental “building-block” level of LCN formed by two adjacent osteocytes. As the hierarchical micro- and macroscale structure of bone is influenced by anatomical location, subjected loads, and growth rate, three distinct tissue types are studied. These include femur, jaw, and heterotopic ossification (HO), a rapidly forming mineralized tissue found in soft tissue compartments following severe trauma. It is found that the LCNs at the fundamental level are composed of hundreds of canalicular segments but of only few separated groups of linked canaliculi (canalicular clusters), resulting in a strongly pronounced interconnectivity. Fluid permeability simulations on intact and artificially altered LCN suggest that the function of the LCN is not only to optimize rapid and efficient access to bone mineral, but also to maintain high permeability when inevitable local interruption of canaliculi occurs.DFG, 372486779, SFB 1340: In vivo Visualisierung der pathologisch verĂ€nderten ExtrazellulĂ€rmatrix „Matrix in Vision“TU Berlin, Open-Access-Mittel – 202

    Defective Peripheral Nerve Development Is Linked to Abnormal Architecture and Metabolic Activity of Adipose Tissue in Nscl-2 Mutant Mice

    Get PDF
    BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS: We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS: We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes
    • 

    corecore