12 research outputs found
Recommended from our members
Status of the intense pulsed neutron source
IPNS is not unique in having concerns about the level of funding, and the future looks good despite these concerns. This report details the progress made at IPNS during the last two years. Other papers in these proceedings discuss in detail the status of the enriched uranium Booster target, the two instruments that are under construction, GLAD and POSY II, and a proposal for research on an Advanced Pulsed Neutron Source (ASPUN) that has been submitted to the Department of Energy (DOE). Further details on IPNS are available in the IPNS Progress Report 1987--1988, available by writing the IPNS Division Office. 9 refs., 3 tabs
Recommended from our members
Performance of the intense pulsed neutron source accelerator system
The Intense Pulsed Neutron Source (IPNS) facility has now been operating in a routine way for outside users since November 1, 1981. From that date through December of 1982, the accelerator system was scheduled for neutron science for 4500 hours. During this time the accelerator achieved its short-term goals by delivering about 380,000,000 pulses of beam totaling over 6 x 10/sup 20/ protons. The changes in equipment and operating practices that evolved during this period of intense running are described. The intensity related instability threshold was increased by a factor of two and the accelerator beam current has been ion source limited. Plans to increase the accelerator intensity are also described. Initial operating results with a new H/sup -/ ion source are discussed
Recommended from our members
Experiments with radioactive samples at the Advanced Photon Source.
The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented
Recommended from our members
Beam-position measurement system at the Argonne Rapid-Cycling Synchrotron
The position measurement system for the Rapid-Cycling Synchrotron (RCS) was originally designed with a four-plate, combined function, capacitive pickup pi electrode situated in each of the six short straight sections. During subsequent operation, it was discovered that these electrodes were limiting the aperture and, therefore, were being activated by the circulating proton beam. In addition, the activation made it difficult to maintain the active electronic components in the RCS tunnel. The new position measurement system has been designed to eliminate these problems. The electrode's horizontal and vertical dimensions have been increased and the plates reorientated for simpler, separate function signal processing. A passive impedance matching network has replaced the active cathode follower, eliminating maintenance requirements in the accelerator tunnel. The Radio Frequency (RF) beam signals are transmitted directly to the Main Control Room (MCR) for processing
Recommended from our members
Intensity stability improvements for the intense pulsed neutron source accelerator system
The Intense Pulsed Neutron Source (IPNS) accelerator system consists of a 750 keV Cockcroft-Walton preaccelerator, 50 MeV linear accelerator and a 500 MeV Rapid Cycling Synchrotron (RCS). The accelerator system accelerates over 2.5 x 10/sup 12/ protons per pulse at a 30 Hz rate to strike a depleted uranium target for producing neutrons (which are used for neutron scattering research.) Since beginning operation in 1977, the beam intensity has been steadily increasing with improvements in various systems, such as a new H/sup -/ source, improved correction magnet systems, etc. Instabilities created by the higher intensities have also been under control
Recommended from our members
Commissioning of experimental enclosures (Hutches) at the Advanced Photon Source - A to Z ALARA.
The Advanced Photon Source (APS), 7 GeV electron Storage Ring at the Argonne National Laboratory is designed to be a major national user facility providing high-brilliance x-ray beams. Figure 1 shows a plan view of the APS. At completion, APS will have 35 bending magnet (BM) beamlines and 35 insertion device (ID) beamlines. A typical x-ray beamline at APS comprises of a front end (FE) that confines the beam; a first optics enclosure (FOE) which houses optics to filter and monochromatize the beam; and beam transports, additional optics, and the experiment stations. Figure 2 shows a section of the storage ring with the layout of the ID and BM beamlines and typical experiment stations. The first x-ray beam was delivered to an experiment station in 1995. Ever since, to date, over 120 experimental stations (hutches) have been commissioned and are receiving intense x-ray beams of varying energies for various experiments. This paper describes in some detail the steps involved in the process of commissioning experimental stations and the implementation of the ALARA at each step
Recommended from our members
Beam intensity increases at the intense pulsed neutron source accelerator
The Intense Pulsed Neutron Source (IPNS) accelerator system has managed a 40% increase in time average beam current over the last two years. Currents of up to 15.6..mu..A (3.25 x 10/sup 12/ protons at 30 Hz) have been successfully accelerated and cleanly extracted. Our high current operation demands low loss beam handling to permit hands-on maintenance. Synchrotron beam handling efficiencies of 90% are routine. A new H/sup -/ ion source which was installed in March of 1983 offered the opportunity to get above 8 ..mu..A but an instability caused unacceptable losses when attempting to operate at 10 ..mu..A and above. Simple techniques to control the instabilities were introduced and have worked well. These techniques are discussed below. Other improvements in the regulation of various power supplies have provided greatly improved low energy orbit stability and contributed substantially to the increased beam current
Recommended from our members
Recent performance of the Intense Pulsed Neutron Source accelerator system
The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10/sup 21/ protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 ..mu..A (3.2 x 10/sup 12/ protons per pulse, 30 pulses per second) and short-term peaks of almost 17 ..mu..A have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation
Recommended from our members
Status report on the Rapid-Cycling Synchrotron
The Rapid Cycling synchrotron (RCS), originally designed as an injection energy booster for the Zero Gradient Synchrotron (ZGS), operated under constraints imposed by ZGS operation until December 1979. Once these restraints were removed, the RCS made rapid strides toward its near-term goals of 8 ..mu..A of protons for Argonne National Laboratory's Intense Pulsed Neutron Source program. Reliable 30-Hz operation was achieved in the spring of 1980 with beams as high as 2 x 10/sup 12/ protons per pulse and weekly average intensities of over 6 ..mu..A on target. These gains resulted from better injections matching, more-efficient RF turnon and dynamic chromaticity control. A high-intensity small-diameter synchrotron, such as the RCS, has special problems with loss control which dictate prudence during intensity-improvement activities. The studies and equipment leading to the intensity gains are discussed