51 research outputs found

    Niches for Species, a multi-species model to guide woodland management: An example based on Scotland's native woodlands

    Get PDF
    Designating and managing areas with the aim of protecting biodiversity requires information on species distributions and habitat associations, but a lack of reliable occurrence records for rare and threatened species precludes robust empirical modelling. Managers of Scotland’s native woodlands are obliged to consider 208 protected species, which each have their own, narrow niche requirements. To support decision-making, we developed Niches for Species (N4S), a model that uses expert knowledge to predict the potential occurrence of 179 woodland protected species representing a range of taxa: mammals, birds, invertebrates, fungi, bryophytes, lichens and vascular plants. Few existing knowledge-based models have attempted to include so many species. We collated knowledge to define each species’ suitable habitat according to a hierarchical habitat classification: woodland type, stand structure and microhabitat. Various spatial environmental datasets were used singly or in combination to classify and map Scotland’s native woodlands accordingly, thus allowing predictive mapping of each species’ potential niche. We illustrate how the outputs can inform individual species management, or can be summarised across species and regions to provide an indicator of woodland biodiversity potential for landscape scale decisions. We tested the model for ten species using available occurrence records. Although concordance between predicted and observed distributions was indicated for nine of these species, this relationship was statistically significant in only five cases. We discuss the difficulties in reliably testing predictions when the records available for rare species are typically low in number, patchy and biased, and suggest future model improvements. Finally, we demonstrate how using N4S to synthesise complex, multi-species information into an easily digestible format can help policy makers and practitioners consider large numbers of species and their conservation needs

    Genetic Insight into Yield-Associated Traits of Wheat Grown in Multiple Rain-Fed Environments

    Get PDF
    Background: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL) directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. Methodology/Principal Findings: Ten yield-associated traits, including yield per plant (YP), number of spikes per plan

    The structure of SW Cornwall and its bearing on the emplacement of the Lizard complex

    Full text link
    Six phases of deformation can be recognized in the Devonian metasediments to the N of the Lizard Complex. The first two phases (D1 & D2) show a variety of orientations and styles, but with a general N or NW vergence. These phases, while representing regional deformation events, are considerably modified by the emplacement of the Lizard Complex. There is a general increase in intensity of both D1 and D2 structures towards the Lizard boundary. This is accompanied by variation in the orientation of both early phases of deformation, leading to a variety of interference patterns. Domains of oblique F1 folds, with axes trending N-S, are developed in the rocks immediately to the NE and NW of the Lizard, and are considered to have formed by differential, NNW-directed thrusting of slabs of the complex during the early regional deformation. D2 produced discrete shear zones ahead and below the Lizard rocks and may have resulted from the gravitational collapse of the D1 nappes. The D3 deformation post-dates the Lizard emplacement, being related to the Cornubian batholith. Subsequent phases represent essentially post-batholith, and hence post-Lizard emplacement, deformatio

    Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat

    Full text link
    Stomata are the site of CO2 exchange for water in a leaf. Variation in stomatal control offers promise in genetic improvement of transpiration and photosynthetic rates to improve wheat performance. However, techniques for estimating stomatal conductance (SC) are slow, limiting potential for efficient measurement and genetic modification of this trait. Genotypic variation in canopy temperature (CT) and leaf porosity (LP), as surrogates for SC, were assessed in three wheat mapping populations grown under well-watered conditions. The range and resulting genetic variance were large but not always repeatable across days and years for CT and LP alike. Leaf-to-leaf variation was large for LP, reducing heritability to near zero on a single-leaf basis. Replication across dates and years increased line-mean heritability to ∼75% for both CT and LP. Across sampling dates and populations, CT showed a large, additive genetic correlation with LP (=-0.67 to-0.83) as expected. Genetic increases in pre-flowering CT were associated with reduced final plant height and both increased harvest index and grain yield but were uncorrelated with aerial biomass. In contrast, post-flowering, cooler canopies were associated with greater aerial biomass and increased grain number and yield. A multi-environment QTL analysis identified up to 16 and 15 genomic regions for CT and LP, respectively, across all three populations. Several of the LP and CT QTL co-located with known QTL for plant height and phenological development and intervals for many of the CT and LP quantitative trait loci (QTL) overlapped, supporting a common genetic basis for the two traits. Notably, both Rht-B1b and Rht-D1b dwarfing alleles were paradoxically positive for LP and CT (i.e. semi-dwarfs had higher stomatal conductance but warmer canopies) highlighting the issue of translation from leaf to canopy in screening for greater transpiration. The strong requirement for repeated assessment of SC suggests the more rapid CT assessment may be of greater value for indirect screening of high or low SC among large numbers of early-generation breeding lines. However, account must be taken of variation in development and canopy architecture when interpreting performance and selecting breeding lines on the basis of CT

    Plot size matters: interference from intergenotypic competition in plant phenotyping studies

    Full text link
    Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments

    Plot size matters: interference from intergenotypic competition in plant phenotyping studies

    Full text link
    Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments

    Plot size matters: interference from intergenotypic competition in plant phenotyping studies

    Full text link
    Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments
    • …
    corecore