37 research outputs found
Renal and neurological side effects of colistin in critically ill patients
Colistin is a complex polypeptide antibiotic composed mainly of colistin A and B. It was abandoned from clinical use in the 1970s because of significant renal and, to a lesser extent, neurological toxicity. Actually, colistin is increasingly put forward as salvage or even first-line treatment for severe multidrug-resistant, Gram-negative bacterial infections, particularly in the intensive care setting. We reviewed the most recent literature on colistin treatment, focusing on efficacy and toxicity issues. The method used for literature search was based on a PubMed retrieval using very precise criteria
Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations
Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolate´s phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.J.T.S. holds a research contract from the Fundación para la Formación e Investigación de los Profesionales de la Salud de Extremadura (FundeSalud), Instituto de Salud Carlos III. M.F.R. holds a clinical research contract “Juan Rodés” (JR14/00036) from the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III
Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteremia.
The global antimicrobial resistance surveillance system (GLASS) was launched by the World Health Organization (WHO) in 2015. GLASS is a surveillance system for clinical specimens that are sent to microbiology laboratory for clinical purposes. The unique feature of GLASS is that clinical data is combined with microbiological data, and deduplication of the microbiological results is performed. The objective of the study was to determine feasibility and benefit of GLASS for surveillance of blood culture specimens. GLASS was implemented at Siriraj Hospital in Bangkok, Thailand using a locally developed web application program (app) to transfer blood culture specimen data, and to enter clinical data of patients with positive blood culture by infection control nurses and physicians via the app installed in their smart phones. The rate of positive blood culture specimens with true infection was 15.2%. Escherichia coli was the most common cause of bacteremia. Secondary bacteremia, primary bacteremia, and central line-associated blood stream infection was observed in 61.8%, 30.6%, and 12.6% of cases, respectively. Sepsis was observed in 56.9% of patients. E.coli was significantly more common in community-acquired bacteremia, whereas Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Acinetobacter baumannii were significantly more common in hospital-acquired bacteremia. Hospital-acquired isolates of E.coli, K.pneumoniae, A.baumannii, P.aeruginosa, S.aureus and Enterococcus faecium were more resistant to antibiotics than community-acquired isolates. In-hospital mortality was significantly higher in patients with antibiotic-resistant bacteremia than in patients with antibiotic non-resistant bacteremia (40.5% vs. 28.5%, p<0.001). The patients with antibiotic-resistant bacteremia consumed more resources than those with antibiotic non-resistant bacteremia. Blood culture results combined with patient clinical data were shown to have more benefit for surveillance of antimicrobial resistance, and to be more applicable for developing local antibiotic treatment guidelines for patients suspected of having bacteremia. However, GLASS consumed more time and more resources than the conventional laboratory-based surveillance system
High fluoroquinolone MIC is associated with fluoroquinolone treatment failure in urinary tract infections caused by fluoroquinolone susceptible Escherichia coli
Abstract Background Suboptimal clinical response to fluoroquinolone (FQ) therapy has been clearly documented in patients with Salmonella typhi infection with reduced FQ susceptibility. However, the clinical impact of reduced FQ susceptibility on other infections including E. coli urinary tract infections (UTIs) has never been evaluated. Methods We conducted a retrospective cohort study of female patients with fluoroquinolone susceptible E. coli (FQSEC) UTIs who received FQ therapy at outpatient services within University of Pennsylvania Health System, Philadelphia. Exposed patients were those with high MIC-FQSEC UTIs (the levofloxacin MIC > 0.12 but ≤ 2 mg/L) while unexposed patients were those with low MIC-FQSEC UTIs (the levofloxacin MIC ≤ 0.12 mg/L). The primary treatment outcome was treatment failure within 10 weeks after initiation of FQ therapy. Results From May 2008 to April 2011, we enrolled 29 exposed patients and 246 unexposed patients. Two patients in each group experienced treatment failure; exposed vs. unexposed (6.9 vs. 0.8%; p = 0.06). Risk difference and risk ratio (RR) for treatment failure were 0.06 [95% CI −0.03–0.15; exact-p = 0.06] and 8.48 [95% CI 1.24–57.97; exact-p = 0.06], respectively. After adjusting for underlying cerebrovascular disease, the RR was 7.12 (95% CI 1.20–42.10; MH-p = 0.04). Conclusion Our study demonstrated the negative impact of reduced FQ susceptibility on the treatment response to FQ therapy in FQSEC UTIs. This negative impact may be more intensified in other serious infections. Future studies in other clinical situations should be conducted to fill the gap of knowledge