11 research outputs found

    Development of Eco-efficiency Indicators for Rubber Glove Product by Material Flow Analysis

    Get PDF
    AbstractRubber glove product Thailand shows the trend of higher growth. Currently, the average export value of rubber glove product is 826.72 US$/year. Thus, the development guideline of this product for Thailand should be concerned. However, rubber glove process caused the environmental and human impacts. Hence, the eco-efficiency concept of rubber glove product was interested. Initial important step of eco-efficiency concept was indicator development. Therefore, this research developed the eco efficiency indicators including economic and environmental indicators of rubber glove product based on the eco-efficiency theory and material flow analysis. The result showed that economic indicators consisted of quantity product and net sale and environmental indicators consisted of material consumption, energy consumption, water consumption, wastewater production, solid waste production, greenhouse gas emission, were selected to eco-efficiency indicators based on eco-efficiency theory and material flow analysis. These eco-efficiency indicators would help to discover more economic and effective ways to improve productivity process and to enhance recyclability or reducing energy and material intensity

    Removal of Hydrogen Sulfide Gas using Biofiltration - a Review

    No full text
    Hydrogen sulfide (H2S) is extremely toxic to living organisms and plants. H2S gas contamination may be treated by both chemical and physical methods but they have high capital costs, demand large energy inputs and result in the generation of secondary hazardous wastes. Biofiltration, a biological technique, has significant economic advantages over other air pollution control technologies. Biofiltration is a process by which contaminated gases pass through the biofilter and pollutants are transported into the biofilm where they are utilized by microbes as a carbon source, an energy source. Thiobacillus sp. is the most frequently used microbial species in H2S biofiltration and can degrade H2S for energy and produce sulfate or sulfuric acid. Moreover, media selection for biofiltration (combing both natural and synthetic media) is an important step towards the development of a successful biofiltration operation. In addition, the optimization parameters of a biofiltration operation are found. First, optimal moisture content may vary from 20 to 60 wt%. Second, most microbial growths occur near neutral pH and wide deviation from these levels will impact the efficiency of the biofiltration. Third, the optimum temperature of biofiltration is near the optimum temperature for microbial inoculation based on removal efficiency. Finally, because nutrient supply is less critical as H2S removal requires few nutrients, commercial fertilizer or secondary effluent from wastewater treatment plants can be used for humid and nutrient supply. Many biofiltrations are designed for H2S control. Graphical abstrac

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ” āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļ°āļ­āļēāļ”Enhancement of Eco-Efficiency Performance for Tread Product Process by Clean Technology

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļāļēāļĢāļžāļąāļ’āļ™āļēāđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™Â Â Â Â  āļĒāļēāļ‡āļĒāļ·āļ”āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļ°āļ­āļēāļ” āđ‚āļ”āļĒāđ€āļĢāļīāđˆāļĄāļ•āđ‰āļ™āļˆāļēāļāļāļēāļĢāļžāļąāļ’āļ™āļēāļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ—āļēāļ‡āļ”āđ‰āļēāļ™āđ€āļĻāļĢāļĐāļāļĻāļēāļŠāļ•āļĢāđŒāđāļĨāļ°āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāđ€āļžāļ·āđˆāļ­āļ™āļģāļ‚āđ‰āļ­āļĄāļđāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āđƒāļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡ āļ›āļĩ āļž.āļĻ. 2553 – 2555 āļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ” āļˆāļēāļāļ™āļąāđ‰āļ™āļˆāļķāļ‡āļžāļąāļ’āļ™āļēāđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ”āļ”āđ‰āļ§āļĒāļŦāļĨāļąāļāļāļēāļĢāļ‚āļ­āļ‡āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļ°āļ­āļēāļ” āļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ”āļ”āđ‰āļ§āļĒāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆ āļžāļšāļ§āđˆāļē āļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđāļĨāļ°āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāđ€āļ›āđ‡āļ™āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļŠāļđāļ‡āđāļĨāļ°āļ•āđˆāļģāļ—āļĩāđˆāļŠāļļāļ”āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĨāļ°āđ€āļĄāļ·āđˆāļ­āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ‚āļ­āļ‡āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ”āđ‰āļ§āļĒāļāļĢāļēāļŸ Snapshot āļžāļšāļ§āđˆāļē āļāļēāļĢāđƒāļŠāđ‰āđ„āļŸāļŸāđ‰āļē āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģ āđāļĨāļ° āļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ”āļ™āļąāđ‰āļ™āļ­āļĒāļđāđˆāđƒāļ™āļĢāļ°āļ”āļąāļš Fully Non-Eco-Efficiency āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļĢāļ°āļ”āļąāļšāļ—āļĩāđˆāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđ€āļŠāļīāļ‡āđ€āļĻāļĢāļĐāļāļāļīāļˆāļ—āļĩāđˆāļĨāļ”āļĨāļ‡āļ„āļ§āļšāļ„āļđāđˆāļāļąāļšāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ—āļĩāđˆāļĄāļĩāļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļˆāļēāļāļ™āļąāđ‰āļ™āļˆāļķāļ‡āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļŦāļĨāļąāļāļāļēāļĢāļ‚āļ­āļ‡āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļ°āļ­āļēāļ”āļĄāļēāļžāļąāļ’āļ™āļēāđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ™āļīāđ€āļ§āļĻāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ” āļžāļšāļ§āđˆāļē āļāļēāļĢāļˆāļąāļ”āļ­āļšāļĢāļĄāļ”āđ‰āļēāļ™āļāļēāļĢāđƒāļŠāđ‰āđāļĨāļ°āļāļēāļĢāļ­āļ™āļļāļĢāļąāļāļĐāđŒāļ—āļĢāļąāļžāļĒāļēāļāļĢāļ™āđ‰āļģāđāļāđˆāļžāļ™āļąāļāļ‡āļēāļ™āđāļĨāļ°āļāļēāļĢāļ™āļģāļ™āđ‰āļģāļĨāđ‰āļēāļ‡āļŠāļīāđ‰āļ™āļŠāļļāļ”āļ—āđ‰āļēāļĒāļāļĨāļąāļšāļĄāļēāđƒāļŠāđ‰āđƒāļŦāļĄāđˆāđ€āļ›āđ‡āļ™āđāļ™āļ§āļ—āļēāļ‡āļ—āļĩāđˆāļ—āļēāļ‡āđ‚āļĢāļ‡āļ‡āļēāļ™āđ€āļŠāđ‰āļ™āļĒāļēāļ‡āļĒāļ·āļ”āļŠāļēāļĄāļēāļĢāļ–āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđ„āļ”āđ‰āļ—āļąāļ™āļ—āļĩāđāļĨāļ°āđ„āļĄāđˆāļĄāļĩāļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒāļ­āļĩāļāļ”āđ‰āļ§āļĒAbstractThis research was to develop the enhancement of eco-efficiency performance of tread product processes by clean technology. Firstly, environmental and economic of eco-efficiency indictors was developed for evaluating performance of tread product processes during 2010-2012. Then, enhancing eco-efficiency approach of tread product processes was developed by clean technology concept. The result of performance evaluation for tread product process by eco-efficiency showed that energy consumption and water use was highest and lowest values of eco-efficiency, respectively. From the result of eco-efficiency trend by snapshot graph analysis showed that electric consumption, water use and carbon emission of tread product process located in Fully Non-Eco-Efficiency, which was the change level of decreased economic will coincide with the increasing environmental impact. Besides, this finding was according to the result of the eco-efficiency value found that the water use was highest resource consumption of production process. Moreover, the clean technology concept was applied for developing approach of enhancing eco-efficiency of tread product process found that the training providing of water use and consumption for worker and the reuse of final leaching water was acknowledged by tread industry due to the immediate implementation and no cost

    Combined Impact of Omicron Vaccination and Environmental Risk Exposure: A Thailand Case Study

    No full text
    This research aimed to determine the levels of COVID-19 booster dose vaccinations in Thai populations in areas with environmental risk exposure during the Omicron outbreak. Five of twenty provinces in Thailand were selected by assessing environmental risk exposure for study settings. A total of 1038 people were interviewed by a structured questionnaire. The predicting factors of COVID-19 booster dose vaccinations were analyzed by univariate and multivariate analysis. The results showed that 69.4% (95% CI 66.5–72.1) of the population was vaccinated with COVID-19 booster doses. Multiple logistics regression revealed that the female gender (AOR 1.49, 95% CI 1.11–2.00), all age groups from 38 to 60 years old, all education levels of at least secondary school, high income (AOR 1.16, 95% CI 1.15–2.24), populations having experience with COVID-19 infection (AOR 2.27, 95% CI 2.05–3.76), knowledge of vaccine (AOR 1.78, 95% CI 1.11–2.83), and trusting attitude (AOR 1.76, 95% CI 1.32–2.36) were factors among those more likely to take COVID-19 booster dose vaccinations in high-environmental-risk-exposure areas. Therefore, an effective booster dose campaign with education programs to increase attitudes toward booster vaccinations should be implemented for the resilience of COVID-19 prevention and control

    Combined Impact of Omicron Vaccination and Environmental Risk Exposure: A Thailand Case Study

    No full text
    This research aimed to determine the levels of COVID-19 booster dose vaccinations in Thai populations in areas with environmental risk exposure during the Omicron outbreak. Five of twenty provinces in Thailand were selected by assessing environmental risk exposure for study settings. A total of 1038 people were interviewed by a structured questionnaire. The predicting factors of COVID-19 booster dose vaccinations were analyzed by univariate and multivariate analysis. The results showed that 69.4% (95% CI 66.5–72.1) of the population was vaccinated with COVID-19 booster doses. Multiple logistics regression revealed that the female gender (AOR 1.49, 95% CI 1.11–2.00), all age groups from 38 to 60 years old, all education levels of at least secondary school, high income (AOR 1.16, 95% CI 1.15–2.24), populations having experience with COVID-19 infection (AOR 2.27, 95% CI 2.05–3.76), knowledge of vaccine (AOR 1.78, 95% CI 1.11–2.83), and trusting attitude (AOR 1.76, 95% CI 1.32–2.36) were factors among those more likely to take COVID-19 booster dose vaccinations in high-environmental-risk-exposure areas. Therefore, an effective booster dose campaign with education programs to increase attitudes toward booster vaccinations should be implemented for the resilience of COVID-19 prevention and control

    Biogas Production by Co-Digestion of Canteen Food Waste and Domestic Wastewater under Organic Loading Rate and Temperature Optimization

    No full text
    The objective of this study was to characterize biogas production performance from the co-digestion of food waste and domestic wastewater under mesophilic (35 ± 1 °C) and thermophilic (55 ± 1 °C) conditions. The food waste used as a co-substrate in this study was collected from a main canteen at the Hatyai campus of Prince of Songkla University, Songkhla Province, Thailand. The optimum co-digestion ratio and temperature conditions in a batch experiment were selected for a semi-continuous experiment. Organic loading rates (OLRs) of 0.66, 0.33, and 0.22 g volatile solid (VS) L−1 d−1 were investigated in a semi-continuous experiment by continuously stirring a tank reactor (CSTR) for biogas production. The highest biomethane potential (BMP, 0.78 ml CH4 mg−1 VS removal) was achieved with a ratio of food waste to domestic wastewater of 10:90 w/v at a mesophilic temperature. An OLR of 0.22 g VS L−1 d−1 of co-digestion yielded positive biogas production and organic removal. The findings of this study illustrate how biogas production can be used for operating feed conditions and control for anaerobic co-digestion of domestic wastewater and food waste from a university canteen
    corecore