2,455 research outputs found
Fisheries policies for a new era
This Guidance Note presents a simple approach to analyzing the governance context for development of aquatic agricultural systems; it is intended as an aid to action research, and a contribution to effective program planning and evaluation. It provides a brief introduction to the value of assessing governance collaboratively, summarizes an analytical framework, and offers practical guidance on three stages of the process: identifying obstacles and opportunities, debating strategies for influence, and planning collaborative actions
Ion and polymer dynamics in polymer electrolytes PPO-LiClO4: II. 2H and 7Li NMR stimulated-echo experiment
We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation
functions characterizing the polymer segmental motion in polymer electrolytes
PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of
the salt on the polymer dynamics, we compare results for different ether oxygen
to lithium ratios, namely, 6:1, 15:1, 30:1 and infinity. For all compositions,
we find nonexponential correlation functions, which can be described by a
Kohlrausch function. The mean correlation times show quantitatively that an
increase of the salt concentration results in a strong slowing down of the
segmental motion. Consistently, for the high 6:1 salt concentration, a high
apparent activation energy E_a=4.1eV characterizes the temperature dependence
of the mean correlation times at Tg < T< 1.1T_g, while smaller values E_a=2.5eV
are observed for moderate salt contents. The correlation functions are most
nonexponential for 15:1 PPO-LiClO4, whereas the stretching is reduced for
higher and lower salt concentrations. A similar dependence of the correlation
functions on the evolution time in the presence and in the absence of ions
indicates that addition of salt hardly affects the reorientational mechanism.
For all compositions, mean jump angles of about 15 degree characterize the
segmental reorientation. In addition, comparison of results from 2H and 7Li NMR
stimulated-echo experiments suggests a coupling of ion and polymer dynamics in
15:1 PPO-LiClO4.Comment: 14 pages, 12 figure
Inelastic Proton‐Proton Scattering at Very High Energy
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87855/2/99_1.pd
Experimental methods in chemical engineering: X-ray photoelectron spectroscopy-XPS
X\u2010ray photoelectron spectroscopy (XPS) is a quantitative surface analysis technique used to identify the elemental composition, empiricalformula, chemical state, and electronic state of an element. The kinetic energy of the electrons escaping from the material surface irradiated by anx\u2010ray beam produces a spectrum. XPS identifies chemical species and quantifies their content and the interactions between surface species. It isminimally destructive and is sensitive to a depth between 1\u201310 nm. The elemental sensitivity is in the order of 0.1 atomic %. It requires ultra highvacuum (1
7107 12Pa) in the analysis chamber and measurement time varies from minutes to hours per sample depending on the analyte. XPSdates back 50 years ago. New spectrometers, detectors, and variable size photon beams, reduce analysis time and increase spatial resolution. AnXPS bibliometric map of the 10 000 articles indexed by Web of Science[1]identifies five research clusters: (i) nanoparticles, thin films, and surfaces;(ii) catalysis, oxidation, reduction, stability, and oxides; (iii) nanocomposites, graphene, graphite, and electro\u2010chemistry; (iv) photocatalysis,water, visible light, andTiO2; and (v) adsorption, aqueous solutions, and waste water
Immobilization of Polyethylene Oxide Surfactants for Non-Fouling Biomaterial Surfaces Using an Argon Glow Discharge Treatment
A non-fouling (protein-resistant) polymer surface is achieved by the covalent immobilization of polyethylene oxide (PEO) surfactants using an inert gas discharge treatment. Treated surfaces have been characterized using electron spectroscopy for chemical analysis (ESCA), static secondary ion mass spectrometry (SSIMS), water contact angle measurement, fibrinogen adsorption, and platelet adhesion. This paper is intended to review our recent work in using this simple surface modification process to obtain wettable polymer surfaces in general, and non-fouling biomaterial surfaces in particular
Effects Of Length, Complexity, And Grammatical Correctness On Stuttering In Spanish-Speaking Preschool Children
Purpose: To explore the effects of utterance length, syntactic complexity, and grammatical correctness on stuttering in the spontaneous speech of young, monolingual Spanish-speaking children. Method: Spontaneous speech samples of 11 monolingual Spanish-speaking children who stuttered, ages 35 to 70 months, were examined. Mean number of syllables, total number of clauses, utterance complexity (i.e., containing no clauses, simple clauses, or subordinate and/or conjoined clauses), and grammatical correctness (i.e., the presence or absence of morphological and syntactical errors) in stuttered and fluent utterances were compared. Results: Findings revealed that stuttered utterances in Spanish tended to be longer and more often grammatically incorrect, and contain more clauses, including more subordinate and/or conjoined clauses. However, when controlling for the interrelatedness of syllable number and clause number and complexity, only utterance length and grammatical incorrectness were significant predictors of stuttering in the spontaneous speech of these Spanish-speaking children. Use of complex utterances did not appear to contribute to the prediction of stuttering when controlling for utterance length. Conclusions: Results from the present study were consistent with many earlier reports of English-speaking children. Both length and grammatical factors appear to affect stuttering in Spanish-speaking children. Grammatical errors, however, served as the greatest predictor of stuttering.Communication Sciences and Disorder
On the low-temperature lattice thermal transport in nanowires
We propose a theory of low temperature thermal transport in nano-wires in the
regime where a competition between phonon and flexural modes governs the
relaxation processes. Starting with the standard kinetic equations for two
different types of quasiparticles we derive a general expression for the
coefficient of thermal conductivity. The underlying physics of thermal
conductance is completely determined by the corresponding relaxation times,
which can be calculated directly for any dispersion of quasiparticles depending
on the size of a system. We show that if the considered relaxation mechanism is
dominant, then at small wire diameters the temperature dependence of thermal
conductivity experiences a crossover from to -dependence.
Quantitative analysis shows reasonable agreement with resent experimental
results.Comment: 12 pages, 3 eps figure
Photoproduction of Long-Lived Holes and Electronic Processes in Intrinsic Electric Fields Seen through Photoinduced Absorption and Dichroism in Ca_3Ga_{2-x}Mn_xGe_3O_{12} Garnets
Long-lived photoinduced absorption and dichroism in the
Ca_3Ga_{2-x}Mn_xGe_3O_{12} garnets with x < 0.06 were examined versus
temperature and pumping intensity. Unusual features of the kinetics of
photoinduced phenomena are indicative of the underlying electronic processes.
The comparison with the case of Ca_3Mn_2Ge_3O_{12}, explored earlier by the
authors, permits one to finally establish the main common mechanisms of
photoinduced absorption and dichroism caused by random electric fields of
photoproduced charges (hole polarons). The rate of their diffusion and
relaxation through recombination is strongly influenced by the same fields,
whose large statistical straggling is responsible for a broad continuous set of
relaxation components (observed in the relaxation time range from 1 to about
1000 min). For Ca_3Ga_{2-x}Mn_xGe_3O_{12}, the time and temperature dependences
of photoinduced absorption and dichroism bear a strong imprint of structure
imperfection increasing with x.Comment: 20 pages, 10 figure
Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating
Catheter associated urinary tract infections (CA-UTIs) are the most common health related infections world wide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk PDMS coated with a novel bacterial biofilm resistant polyacrylate (EGDPEA–co-DEGMA) has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials but delamination of the coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA–co-DEGMA coating has been investigated. Argon Cluster 3D-imaging Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA–co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states and results were compared to mechanical tests. From the ToF-SIMS data we have been able to observe the presence of PDMS, silicates, salt particles, cracks and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA–co-DEGMA coating was stable in the presence of water. The resulting catheter material was resisted Escherichia coli and Proteus mirabilis biofilm colonization by up to 95 % compared with uncoated PDMS after 10 days of continuous bacterial exposure and had the mechanical properties necessary for use as a urinary catheter
In-plane optical response of Bi2Sr2CuO6
We report on infrared reflectivity measurements of the -plane response of
superconducting BiSrCuO single crystals. The frequency dependent
conductivity has a maximum near 700 cm at room temperature, which shifts
to lower frequency and merges with a Drude-peak below 100 K. We attribute the
unusual behaviour of the mid-infrared conductivity to low frequency transitions
between electronic bands of mainly BiO character near the point.
The linear temperature dependence of the low-frequency resistivity can be
followed down to approximately 40 K where it saturates.Comment: Revtex, 4 pages, 4 postscript figures, Phys. Rev. B, in pres
- …