55 research outputs found

    Using oblique decision trees for the morphological classification of galaxies

    Get PDF
    We discuss the application of a class of machine learning algorithms known as decision trees to the process of galactic classification. In particular, we explore the application of oblique decision trees induced with different impurity measures to the problem of classifying galactic morphology data provided by Storrie-Lombardi et al.(1992). Our results are compared to those obtained by a neural network classifier created by Storrie-Lombardi et al, and we show that the two methodologies are comparable. We conclude with a demonstration that the original data can be easily classified into less well-defined categories

    The Morphologically Divided Redshift Distribution of Faint Galaxies

    Get PDF
    We have constructed a morphologically divided redshift distribution of faint field galaxies using a statistically unbiased sample of 196 galaxies brighter than I = 21.5 for which detailed morphological information (from the Hubble Space Telescope) as well as ground-based spectroscopic redshifts are available. Galaxies are classified into 3 rough morphological types according to their visual appearance (E/S0s, Spirals, Sdm/dE/Irr/Pec's), and redshift distributions are constructed for each type. The most striking feature is the abundance of low to moderate redshift Sdm/dE/Irr/Pec's at I < 19.5. This confirms that the faint end slope of the luminosity function (LF) is steep (alpha < -1.4) for these objects. We also find that Sdm/dE/Irr/Pec's are fairly abundant at moderate redshifts, and this can be explained by strong luminosity evolution. However, the normalization factor (or the number density) of the LF of Sdm/dE/Irr/Pec's is not much higher than that of the local LF of Sdm/dE/Irr/Pec's. Furthermore, as we go to fainter magnitudes, the abundance of moderate to high redshift Irr/Pec's increases considerably. This cannot be explained by strong luminosity evolution of the dwarf galaxy populations alone: these Irr/Pec's are probably the progenitors of present day ellipticals and spiral galaxies which are undergoing rapid star formation or merging with their neighbors. On the other hand, the redshift distributions of E/S0s and spirals are fairly consistent those expected from passive luminosity evolution, and are only in slight disagreement with the non-evolving model.Comment: 11 pages, 4 figures (published in ApJ

    Luminosity Functions of Elliptical Galaxies at z < 1.2

    Get PDF
    The luminosity functions of E/S0 galaxies are constructed in 3 different redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST surveys. These independent luminosity functions show the brightening in the luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of significant number evolution. This is the first direct measurement of the luminosity evolution of E/S0 galaxies, and our results support the hypothesis of a high redshift of formation (z > 1) for elliptical galaxies, together with weak evolution of the major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2 table

    The Top Ten List of Gravitational Lens Candidates from the HST Medium Deep Survey

    Get PDF
    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the HST Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e. they are faint systems with sub-arcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates which appear to have multiple images of the source. Three are cases where the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported in Ratnatunga et al 1995 (ApJL, 453, L5) We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area which was searched for these candidate lens objects.Comment: 26 pages including 12 figures and 10 tables. AJ Vol. 117, No.

    New "Einstein Cross" Gravitational Lens Candidates in HST WFPC2 Survey Images

    Get PDF
    We report the serendipitous discovery of ``Einstein cross'' gravitational lens candidates using the Hubble Space Telescope. We have so far discovered two good examples of such lenses, each in the form of four faint blue images located in a symmetric configuration around a red elliptical galaxy. The high resolution of HST has facilitated the discovery of this optically selected sample of faint lenses with small (~1 arcsec) separations between the (I ~ 25-27) lensed components and the much brighter (I ~ 19-22) lensing galaxies. The sample has been discovered in the routine processing of HST fields through the Medium Deep Survey pipeline, which fits simple galaxy models to broad band filter images of all objects detected in random survey fields using WFPC2. We show that the lens configuration can be modeled using the gravitational field potential of a singular isothermal ellipsoidal mass distribution. With this model the lensing potential is very similar, both in ellipticity and orientation, to the observed light distribution of the elliptical galaxy, as would occur when stars are a tracer population. The model parameters and associated errors have been derived by 2-dimensional analysis of the observed images. The maximum likelihood procedure iteratively converges simultaneously on the model for the lensing elliptical galaxy and the source of the lensed components. A systematic search is in progress for other gravitational lens candidates in the HST Medium Deep Survey. This should eventually lead to a good statistical estimate for lensing probabilities, and enable us to probe the cosmological component of the observed faint blue galaxy population.Comment: Accepted for Astrophysical Journal Letters, 1995 November 1 LaTex, 10 pages, includes 2 figures 1 table, tarred gzip uuencoded using uufiles scrip
    • …
    corecore