9 research outputs found

    Cytotoxicity of Platinum(Iv) and Palladium(Ii) Complexes with Meso-1,2-Diphenyl-Ethylenediamine-N,N -Di-3-Propanoic Acid. Crystal Structure of [Pd(1,2-Dpheddp)] Complex

    Get PDF
    The syntheses of tetradentate ligand, meso-1,2-diphenyl-ethylenediamine-N,N-di-3-propanoic acid (H-2-1,2-dpheddp) and corresponding platinum(IV) and palladium(II) complexes are reported here. The spectroscopically predicted structure of the obtained palladium(II) complex was confirmed by X-ray analysis. Singe crystals suitable for X-ray measurements were obtained by slow crystallization from a DMSO-water mixture. Cytotoxic effects of platinum(IV), palladium(II) complexes and cisplatin on the 4T1 and Bl6F1 cell lines were determined using the MTT colorimetric technique. The complexes showed a dose dependence on cytotoxic effect toward both cell lines. Both complexes were less active than cisplatin, the exception was concentrations above 62.5 mu M of platinum(IV) complex in the B16F1 cell line

    Cytotoxic and Antimicrobial Activity of Dehydrozingerone based Cyclopropyl Derivatives

    No full text
    A small series of 1-acetyl-2-(4-alkoxy-3-methoxyphenyl)cyclopropanes was prepared, starting from dehydrozingerone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and its O-alkyl derivatives. Their microbiological activities toward some strains of bacteria and fungi were tested, as well as their in vitro cytotoxic activity against some cancer cell lines (HeLa, LS174 and A549). All synthesized compounds showed significant antimicrobial activity and expressed cytotoxic activity against tested carcinoma cell lines, but they showed no significant influence on normal cell line (MRC5). Butyl derivative is the most active on HeLa cells (IC50 = 8.63 m), while benzyl one is active against LS174 and A549 cell lines (IC50 = 10.17 and 12.15 m, respectively)

    Synthesis and Characterization of Platinum (IV) complexes with S-alkyl Derivatives of Thiosalicylic Acid and the Crystal Structure of the S-butyl Derivative of Thiosalicylic Acid

    No full text
    New platinum(IV)-complexes with S-alkyl derivatives of thiosalicylic acid (alkyl = benzyl-(L1), methyl-(L2), ethyl-(L3), propyl-(L4), butyl-(L5)) have been synthesized and characterized by microanalysis, infrared spectroscopy, and 1H and 13C NMR spectroscopy. Th e bidentate S,O ligand precursor, the S-butyl derivative of thiosalicylic acid (S-bu-thiosal), was prepared, and its crystal structure was determined. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a DMSO-water system. S-bu-thiosal crystallized in a P21/c space group of a monoclinic crystal system with a = 8.0732 (3) ƅ, b = 19.6769 (4) ƅ, c = 8.2291 (3) ƅ and Z = 4. S-bu-thiosal also has a coplanar geometry

    Synthesis, characterization and antimicrobial activity of copper(II) complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II) complex with S-methyl derivative of thiosalicylic acid

    No full text
    The five new copper(II) complexes with some S-alkyl derivatives of thiosalicylic acid (alkyl = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4), butyl (L5)) have been synthesized and characterized by microanalysis and infrared spectra. The spectroscopically predicted structure of the obtained binuclear copper(II) complex with S-methyl derivative of thiosalicylic acid was confirmed by X-ray analysis. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. The compound crystallizes with two binuclear Cu(II) complex molecules in the asymmetric unit. Both molecules have typical paddle-wheel structure with apical positions occupied by water molecules. The independent molecules showed slight difference in configuration mainly reflected in the different orientation of the phenyl rings relating to their carboxylate groups. Antimicrobial activity of these complexes was tested by microdilution method and both minimal inhibitory and microbicidal concentration were determined. The intensity of the antimicrobial activity varied depending on the species of microorganism and the compound type. In general, the activity of the complexes was higher than or similar to the corresponding ligands. All the tested complexes demonstrated moderate or selective antibacterial activity and low antifungal activity. (C) 2014 Elsevier Ltd. All rights reserved

    Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid

    No full text
    The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (12), ethyl (L3), propyl (IA) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, 026 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells. (C) 2016 Elsevier B.V. All rights reserved

    Cytotoxicity of palladium(II) complexes with some alkyl derivates of thiosalicylic acid. Crystal structure of the bis(S-butyl-thiosalicylate)palladium(II) complex, [Pd(S-bu-thiosal)(2)]

    No full text
    The spectroscopically predicted structure of the obtained bis(S-butyl-thiosalicylate)palladium(II) complex, [Pd(S-bu-thiosal)(2)], was confirmed by an X-ray structural study. The asymmetric unit of [Pd(S-bu-thiosal)(2)] consists of neutral complex molecules, where the Pd(II) ion is placed in a cis-square-planar coordination environment formed by O and S atoms of two deprotonated S-butyl-thiosalicylic acid ligands. The cytotoxic effects of the S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding palladium(II) complexes are reported here. The analysis of cancer cell viability showed that all the tested complexes are cytotoxic to human colon carcinoma cells (HCT-116 and CaCo-2) and human lung carcinoma epithelial cells (A549). The antitumor activities of the above mentioned Pd(II) complexes are higher in comparison to the corresponding ligands. (C) 2015 Elsevier Ltd. All rights reserved

    Synthesis, Characterization, and Cytotoxicity of Binuclear Cooper(II)-Complexes with some S-Alkenyl Derivatives of Thiosalicyclic Acid

    No full text
    New complexes of copper(II) with S-alkenyl derivatives of thiosalicylic acid (alkenyl = propenyl-(L1), isobutenyl-(L2)) have been synthesized and characterized by microanalysis, infrared spectra, magnetic measurements, and by NMR spectra. The cytotoxic activity of two newly synthesized precursor S-alkenyl derivatives of thiosalicylic acid were tested using an MTT colorimetric technique on HCT-116 human colon carcinoma cells. The cytotoxic effect of the copper(II)- complexes were higher compared to the cytotoxicity of the corresponding ligand (for concentrations from 31.25 to 250 Ī¼M). Copper(II)-complexes showed a slightly lower cytotoxicity compared to cisplatin. Complexes of copper(II) with S-alkenyl derivatives of thiosalicylic acid (at concentrations from 250 to 1000 Ī¼M) had a cytotoxic effect on HCT-116 cells compared to cisplatin

    DNA binding, antibacterial and antifungal activities of copper(II) complexes with some S-alkenyl derivatives of thiosalicylic acid

    No full text
    The biological activities of two binuclear copper(II) complexes containing S-alkenyl derivatives of thiosalicylic acid are reported [alkenyl = propenyl (L1), isobutenyl (L2)]. The structure of the complex with the S-isobutenyl derivative (C2) was confirmed by single-crystal X-ray structure analysis, which revealed that the structure consists of centrosymmetric, dinuclear complex molecules [Cu-2(S-i-butenyl-thiosal)(4)(DMSO)(2)] containing two Cu(II) centers bridged by four S-isobutyl-thiosalicylate ligands in a paddle-wheel type structure. The Cu(II) atom is situated in a distorted square-pyramidal environment formed by carboxylate oxygen atoms in the basal plane and a DMSO ligand in the axial position. The reactivities of the complexes toward guanosine-5-monophosphate (5-GMP) were investigated. Complex C2 ([Cu-2(S-i-butenyl-thiosal)(4)(H2O)(2)]) reacted more rapidly with 5-GMP than complex C1. The interactions of complexes C1 and C2 with calf thymus DNA (CT-DNA) were examined by absorption (UV-Vis) and emission spectral studies (ethidium bromide displacement studies), revealing good DNA interaction abilities. The antimicrobial activities of the free ligands and their complexes were tested by microdilution method, and both minimal inhibitory and microbicidal concentrations were determined. All the tested substances demonstrated selective and moderate antibacterial activity on gram-positive bacteria, but low antibacterial activity on gram-negative bacteria. Also, the tested substances demonstrated low antifungal activity

    Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    No full text
    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid, [Cu-2(S-et-thiosal)(4)(H2O)(2)] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu-2(S-bu-thiosal)(4)(H2O)(2)] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa. ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay). (C) 2016 Elsevier B.V. All rights reserved
    corecore