57 research outputs found

    CoVe-Tracker: An Interactive SARS-CoV-2 Pan Proteome Evolution Tracker

    Get PDF
    SARS-CoV-2 has significantly mutated its genome during the past 3 years, leading to the periodic emergence of several variants. Some of the variants possess enhanced fitness advantage, transmissibility, and pathogenicity and can also reduce vaccine efficacy. Thus, it is important to track the viral evolution to prevent and protect the mankind from SARS-CoV-2 infection. To this end, an interactive web-GUI platform, namely, CoVe-tracker (SARS-CoV-2 evolution tracker), is developed to track its pan proteome evolutionary dynamics (https://project.iith.ac.in/cove-tracker/). CoVe-tracker provides an opportunity for the user to fetch the country-wise and protein-wise amino acid mutations (currently, 44139) of SARS-CoV-2 and their month-wise distribution. It also provides position-wise evolution observed in the SARS-CoV-2 proteome. Importantly, CoVe-tracker provides month- and country-wise distributions of 2065 phylogenetic assignment of named global outbreak (PANGO) lineages and their 177564 variants. It further provides periodic updates on SARS-CoV-2 variant(s) evolution. CoVe-tracker provides the results in a user-friendly interactive fashion by projecting the results onto the world map (for country-wise distribution) and protein 3D structure (for protein-wise mutation). The application of CoVe-tracker in tracking the closest cousin(s) of a variant is demonstrated by considering BA.4 and BA.5 PANGO lineages as test cases. Thus, CoVe-tracker would be useful in the quick surveillance of newly emerging mutations/variants/lineages to facilitate the understanding of viral evolution, transmission, and disease epidemiology

    Sequence patterns and HMM profiles to predict proteome wide zinc finger motifs

    Get PDF
    Zinc finger (ZnF) is an important class of nucleic acid and protein recognition domain, wherein, zinc ion is the inorganic co-factor that forms a tetrahedral geometry with the cysteine and/or histidine residues. ZnF domains take up diverse architectures with different ZnF motifs and have a wide range of biological functions. Nonetheless, predicting the ZnF motif(s) from the sequence is quite challenging. To this end, 74 unique ZnF sequence patterns are collected from the literature and classified into 32 different classes. Since the shorter length of ZnF sequence patterns leads to inaccurate predictions, ZnF domain Pfam HMM profiles defined under 6 ZnF Pfam clans (215 HMM profiles) and a few undefined Pfam clans (74 HMM profiles) are used for the prediction. A web server, namely, ZnF-Prot (https://project.iith.ac.in/znprot/) is developed which can predict the presence of 31 ZnF domains in a protein/proteome sequence of any organism. The use of ZnF sequence patterns and Pfam HMM profiles resulted in an accurate prediction of 610 test cases (taken randomly from 249 organisms) considered here. Additionally, the application of ZnF-Prot is demonstrated by considering Arabidopsis thaliana, Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis elegans and Ciona intestinalis proteomes as test cases, wherein, 87–96% of the predicted ZnF motifs are cross-validated

    Key diffusion mechanisms involved in regulating bidirectional water permeation across E. coli outer membrane lectin

    Get PDF
    Capsular polysaccharides (CPSs) are major bacterial virulent determinants that facilitate host immune evasion. E. coli group1 K30CPS is noncovalently attached to bacterial surface by Wzi, a lectin. Intriguingly, structure based phylogenetic analysis indicates that Wzi falls into porin superfamily. Molecular dynamics (MD) simulations further shed light on dual role of Wzi as it also functions as a bidirectional passive water specific porin. Such a functional role of Wzi was not realized earlier, due to the occluded pore. While five water specific entry points distributed across extracellular &periplasmic faces regulate the water diffusion involving different mechanisms, a luminal hydrophobic plug governs water permeation across the channel. Coincidently, MD observed open state structure of "YQF" triad is seen in sugar-binding site of sodium-galactose cotransporters, implicating its involvement in K30CPS surface anchorage. Importance of Loop 5 (L5) in membrane insertion is yet another highlight. Change in water diffusion pattern of periplasmic substitution mutants suggests Wzi's role in osmoregulation by aiding in K30CPS hydration, corroborating earlier functional studies. Water molecules located inside β-barrel of Wzi crystal structure further strengthens the role of Wzi in osmoregulation. Thus, interrupting water diffusion or L5 insertion may reduce bacterial virulence

    E. coli Group 1 Capsular Polysaccharide Exportation Nanomachinary as a Plausible Antivirulence Targetin the Perspective of Emerging Antimicrobial Resistance

    Get PDF
    Bacteria evolving resistance against the action of multiple drugs and its ability to disseminate the multidrug resistance trait(s) across various strains of the same bacteria or different bacterial species impose serious threat to public health. Evolution of such multidrug resistance is due to the fact that, most of the antibiotics target bacterial survival mechanisms which exert selective pressure on the bacteria and aids them to escape from the action of antibiotics. Nonetheless, targeting bacterial virulence strategies such as bacterial surface associated polysaccharides biosynthesis and their surface accumulation mechanisms may be an attractive strategy, as they impose less selective pressure on the bacteria. Capsular polysaccharide (CPS) or K-antigen that is located on the bacterial surface armors bacteria from host immune response. Thus, unencapsulating bacteria would be a good strategy for drug design, besides CPS itself being a good vaccine target, by interfering with CPS biosynthesis and surface assembly pathway. Gram-negative Escherichia coli uses Wzy-polymerase dependent (Groups 1 and 4) and ATP dependent (Groups 1 and 3) pathways for CPS production. Considering E. coli as a case in point, this review explains the structure and functional roles of proteins involved in Group 1 Wzy dependent CPS biosynthesis, surface expression and anchorage in relevance to drug and vaccine developments

    A B−−Z junction induced by an A...A mismatch in GAC repeats in the gene for cartilage oligomeric matrix protein promotes binding with the hZαADAR1 protein

    Get PDF
    GAC repeat expansion from five to seven in the exonic region of the gene for cartilage oligomeric matrix protein (COMP) leads to pseudoachondroplasia, a skeletal abnormality. However, the molecular mechanism by which GAC expansions in the COMP gene lead to skeletal dysplasias is poorly understood. Here, we used MD simulations which indicate that an A...A mismatch in a d(GAC)6.d(GAC)6 duplex induces negative supercoiling, leading to a local B−to−Z DNA transition. This transition facilitates the binding of d(GAC)7.d(GAC)7 with the Zα-binding domain of human adenosine deaminase acting on RNA 1 (ADAR1, hZαADAR1), as confirmed by CD, NMR and microscale thermophoresis studies. The CD results indicated that hZαADAR1 recognizes the zigzag backbone of d(GAC)7.d(GAC)7 at the B−Z junction and subsequently converts it into Z−DNA via the so-called passive mechanism. MD simulations carried out for the modeled hZαADAR1−d(GAC)6.d(GAC)6 complex confirmed the retention of previously reported important interactions between the two molecules. These findings suggest that hZαADAR1 binding with the GAC hairpin stem in COMP can lead to a non−genetic, RNA editing−mediated substitution in the COMP that may then play a crucial role in the development of pseudoachondroplasia

    Spontaneous and frequent conformational dynamics induced by A…A mismatch in d(CAA)·d(TAG) duplex

    Get PDF
    Base pair mismatches in DNA can erroneously be incorporated during replication, recombination, etc. Here, the influence of A…A mismatch in the context of 5′CAA·5′TAG sequence is explored using molecular dynamics (MD) simulation, umbrella sampling MD, circular dichroism (CD), microscale thermophoresis (MST) and NMR techniques. MD simulations reveal that the A…A mismatch experiences several transient events such as base flipping, base extrusion, etc. facilitating B–Z junction formation. A…A mismatch may assume such conformational transitions to circumvent the effect of nonisostericity with the flanking canonical base pairs so as to get accommodated in the DNA. CD and 1D proton NMR experiments further reveal that the extent of B–Z junction increases when the number of A…A mismatch in d(CAA)·d(T(A/T)G) increases (1–5). CD titration studies of d(CAA)·d(TAG)n=5 with the hZαADAR1 show the passive binding between the two, wherein, the binding of protein commences with B–Z junction recognition. Umbrella sampling simulation indicates that the mismatch samples anti…+ syn/+ syn…anti, anti…anti & + syn…+ syn glycosyl conformations. The concomitant spontaneous transitions are: a variety of hydrogen bonding patterns, stacking and minor or major groove extrahelical movements (with and without the engagement of hydrogen bonds) involving the mismatch adenines. These transitions frequently happen in anti…anti conformational region compared with the other three regions as revealed from the lifetime of these states. Further, 2D-NOESY experiments indicate that the number of cross-peaks diminishes with the increasing number of A…A mismatches implicating its dynamic nature. The spontaneous extrahelical movement seen in A…A mismatch may be a key pre-trapping event in the mismatch repair due to the accessibility of the base(s) to the sophisticated mismatch repair machinery

    Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades

    Get PDF
    SARS-CoV-2 is currently causing major havoc worldwide with its efficient transmission and propagation. To track the emergence as well as the persistence of mutations during the early stage of the pandemic, a comparative analysis of SARS-CoV-2 whole proteome sequences has been performed by considering manually curated 31,389 whole genome sequences from 84 countries. Among the 7 highly recurring (percentage frequency≥10%) mutations (Nsp2:T85I, Nsp6:L37F, Nsp12:P323L, Spike:D614G, ORF3a:Q57H, N protein:R203K and N protein:G204R), N protein:R203K and N protein: G204R are co-occurring (dependent) mutations. Nsp12:P323L and Spike:D614G often appear simultaneously. The highly recurring Spike:D614G, Nsp12:P323L and Nsp6:L37F as well as moderately recurring (percentage frequency between ≥1 and <10%) ORF3a:G251V and ORF8:L84S mutations have led to4 major clades in addition to a clade that lacks high recurring mutations. Further, the occurrence of ORF3a:Q57H&Nsp2:T85I, ORF3a:Q57H and N protein:R203K&G204R along with Nsp12:P323L&Spike:D614G has led to 3 additional sub-clades. Similarly, occurrence of Nsp6:L37F and ORF3a:G251V together has led to the emergence of a sub-clade. Nonetheless, ORF8:L84S does not occur along with ORF3a:G251V or Nsp6:L37F. Intriguingly, ORF3a:G251V and ORF8:L84S are found to occur independent of Nsp12:P323L and Spike:D614G mutations. These clades have evolved during the early stage of the pandemic and have disseminated across several countries. Further, Nsp10 is found to be highly resistant to mutations, thus, it can be exploited for drug/vaccine development and the corresponding gene sequence can be used for the diagnosis. Concisely, the study reports the SARS-CoV-2 antigens diversity across the globe during the early stage of the pandemic and facilitates the understanding of viral evolution

    The evolving proteome of SARS-CoV-2 predominantly uses mutation combination strategy for survival

    Get PDF
    The knowledge about SARS-CoV-2 proteome variations is important to understand its evolutionary tactics and in drug/vaccine design. An extensive analysis of 125,747 whole proteome reveals 7915 recurring mutations (involving 5146 positions) during December2019-November 2020. Among these, 10 and 51 are highly and moderately recurring mutations respectively. Ever since the pandemic outbreak, ∼50% new proteome variants evolve every month, resulting in 5 major clades. Intriguingly, ∼70% of the variants reported in January 2020 are due to the emergence of new mutations, which sharply declines to ∼ 40% in April 2020 and thenceforth, declines steadily till November 2020(∼10%). An exactly opposite trend is seen for variants evolved with cocktail of existing mutations: the lowest in January 2020(∼20%) and the highest in November 2020(80%). This leads to a steady increase in the average number of mutations per sequence. This indicates that the virus has reached the slow pace to accept new mutations. Instead, it uses a mutation combination strategy for survival
    corecore