232 research outputs found

    A study on work life balance amongst managers of garment units in Tamilnadu State, India

    Get PDF
    Work life balance plays an important role now a day. Employees want it, managers need it, and organization cannot afford to ignore it! Managers need to take work-life balance seriously particularly in garment units. The more overworked and overloaded, the higher the demands or the expectations on the department or the work unit, the more the managers have to rely on their employees to produce at the highest possible level of efficiency, effectiveness, and quality. If managers are out of balance or stressed or sick then they will be less committed to the outcomes, they will be less committed to the organization, they will be less committed to the client, the product or goods or service that they are producing. This research paper examined the work life balance amongst managers of garment units in Tamil nadu state. The methodology adopted for the study was descriptive research design. Data were collected from 480 managers through questionnaire method around Tamilnadu state, India. In the present study, stastical tools such as percentage analysis, mean value, chi-square, ANOVA, and correlation analysis were used for the analysis. The results indicated that the work life balance of managers are not completely successful due to their present working hours, working environment and increase in products prices, work load, responsibilities in work and  decrease of job security due to recession

    Mannitol transport and mannitol dehydrogenase activities are coordinated in olea europaea under salt and osmotic stresses

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Plant and Cell Physiology following peer review. The definitive publisher-authenticated version is available online at http://pcp.oxfordjournals.org/cgi/content/abstract/pcr121? ijkey=6orgUM5fkIjedYn&keytype=refThe intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterised as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in mannitol-growing cells, at 25 °C and pH 9.0, were as follows: Km, 54.5 mM mannitol and Vmax, 0.47 μmol h-1 mg-1 protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport, in mannitol- and sucrose-growing cells. Furthermore, sucrosegrowing cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and PEG treatments, both in mannitol- and sucrose-growing cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Altogether, these studies support that olive tree copes with salinity and drought by coordinating mannitol transport with intracellular metabolism.This work was supported by the Portuguese Foundation for Science and Technology (FCT) (research project ref. PTDC/AGR-ALI/100636/2008; to A. Conde, grant ref. SFRH/BD/47699/2008; to C. Conde, grant ref. SFRH/BPD/34998/2007; to P. Silvagrant ref. SFRH/BD/13460/2003)

    Heat Stress Tolerance in Rice (Oryza sativa L.): Identification of Quantitative Trait Loci and Candidate Genes for Seedling Growth Under Heat Stress

    Get PDF
    Productivity of rice, world's most important cereal is threatened by high temperature stress, intensified by climate change. Development of heat stress-tolerant varieties is one of the best strategies to maintain its productivity. However, heat stress tolerance is a multigenic trait and the candidate genes are poorly known. Therefore, we aimed to identify quantitative trait loci (QTL) for vegetative stage tolerance to heat stress in rice and the corresponding candidate genes. We used genotyping-by-sequencing to generate single nucleotide polymorphic (SNP) markers and genotype 150 F8 recombinant inbred lines (RILs) obtained by crossing heat tolerant “N22” and heat susceptible “IR64” varieties. A linkage map was constructed using 4,074 high quality SNP markers that corresponded to 1,638 recombinationally unique events in this mapping population. Six QTL for root length and two for shoot length under control conditions with 2.1–12% effect were identified. One QTL rlht5.1 was identified for “root length under heat stress,” with 20.4% effect. Four QTL were identified for “root length under heat stress as percent of control” that explained the total phenotypic variation from 5.2 to 8.6%. Three QTL with 5.3–10.2% effect were identified for “shoot length under heat stress,” and seven QTL with 6.6–19% effect were identified for “shoot length under heat stress expressed as percentage of control.” Among the QTL identified six were overlapping between those identified using shoot traits and root traits: two were overlapping between QTL identified for “shoot length under heat stress” and “root length expressed as percentage of control” and two QTL for “shoot length as percentage of control” were overlapping a QTL each for “root length as percentage of control” and “shoot length under heat stress.” Genes coding 1,037 potential transcripts were identified based on their location in 10 QTL regions for vegetative stage heat stress tolerance. Among these, 213 transcript annotations were reported to be connected to stress tolerance in previous research in the literature. These putative candidate genes included transcription factors, chaperone proteins (e.g., alpha-crystallin family heat shock protein 20 and DNAJ homolog heat shock protein), proteases, protein kinases, phospholipases, and proteins related to disease resistance and defense and several novel proteins currently annotated as expressed and hypothetical proteins

    Chemical priming of immunity without costs to plant growth

    Get PDF
    - β-aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. - Using site-directed mutagenesis, we demonstrate that the (L)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). - A range of resistance-inducing compounds were identified, of which (R)-β-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. - RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection

    Fungicidal properties and insights on the mechanisms of the action of volatile oils from Amazonian Aniba trees

    Get PDF
    The Amazonian Aniba species are world-renowned for their essential oils (EOs). The molecules derived from EOs have been intensively investigated in regards to their potential for disease control in plants. The aim of this study was to investigate the antifungal properties of Aniba canelilla EO (ACEO) and Aniba parviflora EO (APEO) when used against eight phytopathogenic fungi. Gas chromatography-mass spectrometry (GC–MS) analysis of oils showed that 1-nitro-2-phenylethane (∼80%) and linalool (∼40%) are the major compounds in ACEO and APEO, respectively. The ACEO and APEO treatments displayed remarkable antifungal effects against Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Fusarium solani, Alternaria alternata, Colletotrichum gloeosporioides, Colletotrichum musae and Colletotrichum guaranicola, for which the IC50 values ranged from 0.05 to 0.28 μL mL−1 and 0.17 to 0.63 μL mL−1, respectively. Furthermore, the oil caused the inhibition of conidial germination by at least 83% for ACEO and 78% for APEO. The ACEO and APEO at 5 μL mL−1 induced leakage of nucleic acids and protein, suggesting that inhibition could be linked to the breakdown of membrane integrity of the conidia. In addition, the detection of fluorescent dye propidium iodide (PI) on F. solani conidia treated with ACEO and APEO indicates damage on the conidia cytoplasmic membrane. The findings of this study may be of biotechnological interest for the development of new plant protection products, with the advantage of being less harmful than the agrochemicals currently available. © 2019 Elsevier B.V
    corecore